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INTRODUCTION

The purpose of this course is to provide an introduction to the basic theory of crystals and
crystalline cohomology. Crystalline cohomology was invented by A.Grothendieck in 1966 to
construct a Weil cohomology theory for a smooth proper variety X over a field k of character-
istic p > 0. Crystals are certain sheaves on the crystalline site. The first main theorem which
we are going to prove is that if there is a lift XW of X to the Witt ring W (k), then the cat-
egory of integrable quasi-coherent crystals is equivalent to the category of quasi-nilpotent
connection of XW /W . Then we will prove that assuming the existence of the lift the crys-
talline cohomology of X /k is "the same" as the de Rham cohomology of XW /W . Following
from this we will finally prove a base change theorem of the crystalline cohomology using
the very powerful tool of cohomological descent. Along the way we will also see a crystalline
version of a "Gauss-Manin" connection.
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1 INTRODUCTION (17/10/2017)

In this lecture we will give an introduction to crystals and crystalline cohomology. There will
be no proofs, and the purpose is just to get a picture of what is going on.

2 DIVIDED POWERS (24/10/2017)

• The Definition of Divided Powers ([BO, §3, 3.1]).

• Examples: (a) If A is an algebra overQ; (b) If A =W (k), the Witt ring of a perfect field k.

• Interlude: The Witt ring of a perfect field k is characterized by the property that it is a
complete DVR with uniformizer p and residue field k.

• PD-ideals are nil ideals if A is kill by m ∈ N+. Easy proof: For any x ∈ I , we have xn =
n!γn(x) = 0 for n ≥ m.

• Definition of sub P.D. ideals ([BO, §3, 3.4]).

• Lemma: If (A, I ,γ) is a P.D. ring and J ⊆ A is an ideal, then there is a PD-structure γ̄ on
Ī : = I (A/J ) such that (A, I ,γ) → (A/J , Ī , γ̄) is a PD-map iff J

⋂
I ⊆ I is a sub PD-ideal

([BO, §3, 3.5]).

• Theorem: If (A, M) is a pair, where A is a ring and M is an A-module, then there is
triple (ΓA(M),Γ+A(M), γ̃) with an A-linear map ϕ : M → Γ+A(M) which satisfy the univer-
sal property that if (B , J ,δ) is any PD-A-algebra and ψ : M → J is A-linear, then there is
a unique PD-morphism

ψ̄ : (ΓA(M),Γ+A(M), γ̃) → (B , J ,δ)

such that ψ̄◦φ=ψ. Moreover, we know that ΓA(M) is graded with Γ0 = A and Γ1 = M .

• Sketch of the proof: We take G A(M) to be the A-polynomial ring generated by indeter-
minates {(x,n)|x ∈ M ,n ∈N} whose grading is given by deg(x,n) = n. Let I A(M) be the
ideal of G A(M) generated by elements

1. (x,0)−1

2. (λx,n)−λn(x,n) for x ∈ M and λ ∈ A

3. (x,n)(x,m)− (n+m)!
n!m! (x,n +m)

4. (x + y,n)−∑
i+ j=n(x, i )(y, j )

One sees that I A(M) is a homogeneous ideal. Define ΓA(M) :=G A(M)/I A(M). Now let
x[n] be the image of (x,n). Then we have the following

• Lemma: The ideal Γ+A(M) ⊂ ΓA(M) has a unique PD-structure γ such that γi (x[1]) = x[n]

for all i ≥ 1 and all x ∈ M .
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• Lemma: If A′ is an A-algebra, A′⊗A ΓA(M) ∼= ΓA′(A′⊗A M).

• Lemma: If {Mi |i ∈ I } is a direct system of A-modules, then we have

lim−−→
i∈I

ΓA(Mi ) = ΓA(lim−−→
i∈I

Mi )

• Lemma: ΓA(M)⊗A ΓA(N ) ∼= ΓA(M ⊕N ).

• Lemma: Suppose M is free with basis S := {xi |i ∈ I }. Then Γn(M) is free with basis
{x[q1]

1 · · ·x[qk ]
k |∑qi = n}.

3 THE PD-ENVELOP (07/11/2017)

Theorem 3.1. Let (A, I ,γ) be a PD-algebra and let J be an ideal in an A-algebra B such that
I B ⊆ J . Then there exists a B-algebra DB ,γ(J ) with a PD-ideal ( J̄ , γ̄) such that JDB ,γ(J ) ⊆ J̄ ,
such that γ̄ is compatible with γ, and with the following universal property: For any B-algebra
containing an ideal K which contains JC and with a PD-structure δ compatible with γ, there
is a unique PD-morphism (DB ,γ(J ), J̄ , γ̄) → (C ,K ,δ) making the obvious diagrams commute.

Proof. First assume that f (I ) ⊆ J . Viewing J as a B-module we get a triple (ΓB (J ),Γ+B (J ), γ̃).
Letϕ : J → Γ1(J ) be the canonical identification. We define a new ideal J generated by ideals
of the two forms:

1. ϕ(x)−x for x ∈ J

2. ϕ( f (y))[n] − f (γn(y)) for y ∈ I .

One first has to show the following

Lemma 3.2. The ideal J
⋂
Γ+B (J ) is a sub PD-ideal of Γ+B (J ).

So now we define DB ,γ(J ) to be ΓB (J )/J , J̄ := Γ+B (J )/J
⋂
Γ+B (J ), and γ̃ is the PD-structure

induced by the sub PD-ideal. Now one checks the two things: JD ⊆ J̄ (come from (1) of the
definition of J ), and γ is compatible with γ (follows from (2) of the definition of J ). Now it
is easy to check that the triple (DB ,γ(J ), J̄ ,J ) is universal among all such triples.

Here is a list of important properties of PD-envelops.

• J̄ is generated, as a PD-ideal, by J . That is J̄ is generated by elements {γ̄n( j )| j ∈ J ,n ≥ 1}.
Moreover a set of generators of J provides a set of PD-generators of J̄ .

• If the map (A, I ,γ) → (B , J ) factors as a diagram

(A, I ,γ) //

&&

(B , J )

(A′, I A′,γ′)

99

then we have DB ,γ(J ) =DB ,γ′(J ).

3



• The canonical map B/J →DB ,γ(J ) is an isomorphism. Indeed, one just has to consider
the PD-triple (B/J ,0,0) and play with the universal property of (DB ,γ(J ), J̄ , γ̄).

• If M is an A-module, if B = SymA(M), and if J̄ is the ideal Sym+
A(M), then DB ,γ(J ) =

ΓA(M). This is clear when man plays with the universal property of the PD-envelop of
(B , J ).

• Lamma: Suppose that J ⊆ B is an ideal, and (A, I ,γ) → (B , J ) is a morphism. If B ′ is flat

over B , then there is a canonical isomorphism (DB ,γ⊗B B ′)
∼=−→DB ′,γ(JB ′).

• Theorem: Let (A, I ,γ) be a PD-triple. Then there exists a unique PD-structure δ on the
ideal J = I A〈xt 〉t∈T + (A〈xt 〉t∈T )+ such that

1. δn(xi ) = x[n]
i ;

2. The map (A, I ,γ) → (A〈xt 〉t∈T , J ,δ) is a PD-morphism.

Moreover, there is a universal property: Whenever (A, I ,γ) → (C ,K ,ε) is a PD-map and
{kt }t∈T is a family in K , then there exists a unique PD-map (A〈xt 〉t∈T , J ,δ) → (C ,K ,ε)
sending xt 7→ kt .

• Let (B , I ,γ) be a PD-triple, and let J ⊆ B be an ideal containing I . Choose { ft }t∈T a
family in J such that J = I +〈 ft 〉t∈T . Then there exists a surjection ψ : (B〈xt 〉, J ′,δ) →
(DB ,γ(J ), J̄ , γ̄) which maps xt 7→ f̄t , where (B〈xt 〉, J ′,δ) is the triple defined in the above
theorem, and f̄t is the image of ft . The kernel of ψ is generated by all elements:

1. xt − ft for ft ∈ J ;

2. δn(
∑

t rt xt − r0) whenever
∑

t rt ft = r0 with r0 ∈ I , rt ∈ B and n ≥ 1.

• Lemma: Let (A, I ,γ) be a PD-ring. Let B be an A-algebra, and let I B ⊆ J ⊆ B be an ideal.
Then we have

(DB [xt ],γ(JB [xt ]+〈xt 〉), JB [xt ]+〈xt 〉, γ̄) = (DB ,γ(J )〈xt 〉, J ′,δ)

4 THE AFFINE CRYSTALLINE SITE (14/11/2017)

Settings: Let p be a prime number, and let (A, I ,γ) be a PD-triple in which A is aZ(p)-algebra
(i.e. any integer which is prime to p is invertible in in A). Let A →C be a ring map such that
IC = 0 and p is nilpotent in C . (Note that in this case C is automatically an A/I -algebra.)
Typical Examples: Keep in mind the situation when

(A, I ,γ) = (W (k), (p),γ)

and when
(A, I ,γ) = (Wn(k), (p),γ)

where k is a perfect field of characteristic p > 0.

Definition 1. 1. A thickening of C over (A, I ,γ) is a PD-map (A, I ,γ) → (B , J ,δ) such that p
is nilpotent in B , and an A/I -algebra map C → B/J .
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2. A map of PD-thickenings is a map (B , J ,δ) → (B ′, J ′,δ′) over the thickening (A, I ,γ)
whose induced map B/J → B ′/J ′ is a C -algebra map.

3. We denote CRIS(C /A) the category of PD-thickenings of C over (A, I ,γ).

4. We denote Cris(C /A) the full subcategory of CRIS(C /A) whose objects are PD-thickenings
((B , J ,δ),C → B/J ) in which C → B/J is an isomorphism.

Lemma 4.1. 1. The category CRIS(C /A) has non-empty products, and the category Cris(C /A)
has empty product, i.e. the terminal object.

2. The category CRIS(C /A) has all finite non-empty colimits and the functor

CRIS(C /A) −→C −algebras

(B , J ,δ) −→ B/J

commutes with those.

3. The category Cris(C /A) has all finite non-empty colimits and the functor

Cris(C /A) −→ CRIS(C /A)

commutes with those.

Proof. (i) The empty product of Cris(C /A) is indeed (C ,0,;). The product of a family of
thickenings (Bt , Jt ,δt ) in CRIS(C /A) is just (

∏
t Bt ,

∏
t Jt ,

∏
t δt ) with the A/I -algebra map

C →∏
t Bt coming from each C → Bt .

(ii) First note that by https:https://stacks.math.columbia.edu/tag/04AS to show col-
imits (resp. limit) exist we only have to prove that coproducts and pushouts (resp. prod-
ucts and pullbacks) exist. We divide the proof into steps.

• The category of PD-triples admits limits.

• The category of PD-triples admits colimits.

• Coproducts of pairs exist in CRIS(C /A). There are also two remarks: (a) If the pair
is in Cris(C /A), then the coproduct is also in Cris(C /A). (b) The functor

CRIS(C /A) −→C −algebras

commutes with coproducts.

• Coequalizers of pairs exist in CRIS(C /A). There are also two remarks: (a) If the pair
is in Cris(C /A), then the coequalizer is also in Cris(C /A). (b) The functor

CRIS(C /A) −→C −algebras

commutes with coproducts.

• Conclude the proof.
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Definition 2. Let Ĉris(C /A) be the category whose objects are PD-triples (B , J ,δ), where B is
only p-adically comlete instead of nilpotent in B , plus an A/I -algebra map C → B/J as usual.
Clearly that Cris(C /A) is a full subcategory of Ĉris(C /A), as pn-torsion rings are p-adically
complete.

Lemma 4.2. Let (A, I ,γ) be a PD-ring. Let p be a prime number. If p is nilpotent in A/I , and if
A is a Z(p)-algebra then

1. The p-adic completion Â goes surjectively to A/I .

2. The kernel of Â → A/I is Î .

3. Each γn is continuous for the p-adic topology on I .

4. For e large, the idea pe A ⊆ I is preserved by γn and we have

(Â, Î , δ̂) = lim←−−
e

(A/pe A, I /pe I ,γe )

Lemma 4.3. Let P → C be a surjection of A-algebras with kernel J . We write (D, J̄ , γ̄) for the

PD-envelop of (P, J ) with respect to (A, I ,γ). Let (D̂ , ˆ̄J , ˆ̄)γ be the completion of (D, J̄ , γ̄). For every
e ≥ 1, set (Pe , Je ) := (P/pe P, J/(J ∩pe P )) and (De , J̄e , γ̄e ) the PD-envelop of this pair. Then for
large e we have

1. pe D ⊆ J̄ and pe D̂ ⊆ ˆ̄J are preserved by the PD-structures.

2. D̂/pe D̂ ∼= D/pe D = De as PD-rings.

3. (De , J̄e , γ̄e ) ∈ Cris(C /A).

4. (D̂ , ˆ̄J , ˆ̄)γ= lim←−−(De , J̄e , γ̄e ).

5. (D̂ , ˆ̄J , ˆ̄)γ ∈ ˆCris(C /A).

Lemma 4.4. Let P be a polynomial algebra over A, and let P �C be a surjection of A-algebras
with kernel J . Then every object (B , J ,δ) of CRIS(C /A) there exists an e and a morphism

(De , J̄e , γ̄e ) → (B , J ,δ)

in CRIS(C /A).

Lemma 4.5. Let P be a polynomial algebra over A, and let P �C be a surjection of A-algebras
with kernel J . Let (D, J̄ , γ̄) be the p-adic completion of DP,γ(J ). For every object (B , J ,δ) of
Ĉris(C /A) there exists a morphism

(D, J̄ , γ̄) → (B , J ,δ)

in Ĉris(C /A).
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5 THE DIFFERENTIALS OF PD-STRUCTURES (21/11/2017)

• Let A be a ring. Let (B , J ,δ) be a PD-triple. Let A → B be a ring map. Let M be a B-
module. A PD-derivation is a usual A-derivation θ : B → M with the extra condition
that

(∗) θ(γn(x)) = γn−1(x)θ(x)

for all n ≥ 1 and x ∈ J . Let

ΩB/A,δ : ΩB/A/〈d(γn(x))−γn−1(x)d x〉

Then ΩB/A,δ has the universal property that

HomB (ΩB/A,δ, M)
∼=−−−−→ PD-DerA(B , M)

where M is a B-module. Conceptually, condition (∗) can be thought of as the following:

d(
xn

n!
) = xn−1

(n −1)!
d x

• A basic Lemma:

Lemma 5.1. Let A be a ring. Let (B , J ,δ) be a PD-triple, and A → B be a ring map.

1. If we equip B [X ] with the PD-structure (B [X ], JB [X ],δ′), where

γn(aX m) = γn(a)X mn

then we have
ΩB [X ]/A,δ′ =ΩB/A,δ⊗B B [X ]⊕B [X ]d X

Here B [X ]d X just means a free B [X ]-module.

2. If B〈X 〉 is equipped with the PD-structure (JB〈X 〉+B〈X 〉+,δ′), where δ′ takes j ∈ J
to δn( j ) and j X [m] to (m+n)!

m!n! j n X [m+n], then

ΩB〈X 〉/A,δ′ =ΩB/A,δ⊗B B〈X 〉⊕B〈X 〉d X

3. Let K ⊆ J be an ideal preserved by δn for all n ≥ 1. Set B ′ := B/K and denote δ′ the
induced PD-structure on J/K . Then we an exact sequence:

K /K 2 →ΩB/A,δ⊗B B ′ →ΩB ′/A,δ′ → 0

Proof. (1) Set B [X ]
d−→ΩB/A,δ⊗B B [X ]⊕B [X ]d X sending

b0 +b1X +·· ·bn X n 7→ db0 ⊗1+db1 ⊗X +·· ·+dbn ⊗X n +b1d X +·· ·+nbn X n−1d X
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This is an A-derivation. For example we have the derivation:

d(δ′n(bX m)) = d(X mnδn(b))

= δn(b)d X mnd X +δn−1(b) ·db ·X mn

= mX mn−1 · (nδn(b))d X +δn−1(b) ·db ·X mn

= mX mn−1 ·δn−1(b) ·b ·d X +δn−1(b) ·db ·X mn

= (δn−1(b) ·X m(n−1)) · (X mdb +mbX m−1d X )

= (δ′n−1(bX m) ·d(bX m))

The universal property: Using the universal property of direct sum the universal prop-
erty of d boils down to the universal property of ΩB/A,δ and the universal property of
the free module B [X ]d X .

(2) Almost the same as (1).

(3) Look at the diagram:

0 // M //

f

��

ΩB/A ⊗B B ′ //

φ
����

ΩB ′/A
//

ϕ

����

0

0 // M ′ // ΩB/A,δ⊗B B ′ // ΩB ′/A,δ′ // 0

Since Ker(φ) � Ker(ϕ), we see that f is surjective. Since K /K 2 � M , it follows that
K /K 2 � M ′.

• Definition: Let (A, I ,γ) be a PD-ring. We denote I [n] the ideal generated byγe1 (x1) · · ·γet (xt )
with

∑
et ≥ n and xi ∈ I . So we have I [0] = A, I [1] = I and I i ⊆ I [i ].

• Here is an important Proposition:

Proposition 5.2. Let a : (A, I ,γ) → (B , J ,δ) be a map of PD-triples. Let (B(1), J (1),δ(1))
be the coproduct of a with itself. Denote K the kernel of the diagonal map ∆ : B(1) → B.
Then we have

ΩB/A,δ
∼= K /(K 2 + (K

⋂
J (1))[2])

Proof. Let’s denote the two projections

B
s0

⇒
s1

B(1)

by s0, s1 respectively. Since the composition

B
s0

⇒
s1

B(1)
∆−→ B

is the identity, we see that the map B → B(1) sending b 7→ s0(b)− s1(b) factors through
K. Thus we obtain a map

d : B −→ K /(K 2 + (K ∩ J (1))[2])

8



Clearly d is additive and vanishes on A, and

d(b1b2) = b1d(b2)+b2d(b1)

= s1(b1)(s1(b1)− s0(b2))+ s0(b2)(s1(b1)− s0(b1))

= s1(b1)s1(b2)− s0(b2)s0(b1)

= s1(b1b2)− s0(b1b2)

Thus d is a derivation. We have to check that d is a PD-derivation. Let x ∈ J . Set
y = s1(x), z = s0(z) and λ := δ(1). Since d(λn(x)) = s1(λn(x))− s0(λn(x)) =λn(y)−λn(z),
and λn−1(x) ·d x =λn−1(y)(y − z), we need to show that

λn(y)−λn(z) =λn−1(y)(y − z)

for all n ≥ 1. If n = 1 this is clearly true. Let n > 1. We have that

λn(z − y) =
n∑

i=0
(−1)n−iλi (z)λn−i (y) ∈ K 2 + (K ∩ J (1))[2]

as z − y ∈ K ∩ J (1) and n ≥ 2. Then we have

λn(y)−λn(z) =λn(y)+
n−1∑
i=0

(−1)n−iλi (z)λn−i (y)

=λn(y)+ (−1)nλn(y)+
n−1∑
i=1

(−1)n−i (λi (y)−λi−1(y)(y − z))λn−i (y)

Since we have

λi (y)λn−i (y) =
(

n

i

)
λn(y)

and

λi−1(y)λn−i (y) =
(

n −1

i −1

)
λn−1(y)

we can continue

λn(y)−λn(z) =λn(y)+ (−1)nλn(y)+
n−1∑
i=1

(−1)n−i

(
n

i

)
λn(y)−

n−1∑
i=1

(−1)n−i

(
n −1

i −1

)
λi−1(y)(y − z))

=
n∑

i=0
(−1)n−i

(
n

i

)
λn(y)−

n−2∑
i=0

(−1)n−i−1

(
n −1

i

)
λn−1(y)(y − z)

= (1−1)nλn(y)− (1−1)λn−1(y − z)+λn−1(y)(y − z)

=λn−1(y)(y − z)

Let M be any B-module, and let θ : B → M be a PD A-derivation. Set D := B ⊕M , where
M is an ideal of square 0. Define a PD-structure on J ⊕M ⊆ D by setting δ′n(x +m) =
δ′n(x)+δ′n−1(x)m for all n ≥ 1. There are two PD-morphisms:

(B , J ,δ)
t0

⇒
t1

(D = B ⊕M , J ⊕M ,δ′)
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where t1 is just the canonical inclusion b 7→ b and t2 is the map sending b 7→ b +θ(b).
Thus by the universal property we have a commutative diagram

(B(1), J (1),δ(1)) //

����

(D, J ⊕M ,δ′)

����

(B = B(1)/K , J ,δ) (B , J ,δ)

This induces a map K → M . Since M 2 = 0 and M [2] = 0. Thus we get a factorization

φ := K /(K + (K ∩ J (1))[2]) → M

This φ is compatible with d and θ by construction, and it is unique because K is gener-
ated by {s1(b)− s0(b)|b ∈ B}.

• Lemma: Let (B , J ,δ) ∈ CRIS(C /A) and let (B(1), J (1),δ(1)) be the coproduct in CRIS(C /A).
Let K be the kernel of the diagonal. Then K∩J (1) ⊆ J (1) is preserved by the PD-structure
and,

ΩB/A,δ
∼= K /(K 2 + (K

⋂
J (1))[2])

6 THE DE RHAM COMPLEX IN THE AFFINE CASE (28/11/2017)

• Lemma: Let (A, I ,γ) be a PD-triple, and let A → B be a ring map. Let I B ⊆ J ⊆ B be an
ideal. Let (D, J̄ , γ̄) := (DB ,γ(J ), J̄ , γ̄). Then we have

ΩD/A,δ =ΩB/A ⊗B D

• Proof. Let’s first suppose that A → B is flat. Then there is a unique PD-structure (B , I B ,γ′)
which is compatible with (A, I ,γ). By a lemma in §3, we see that there is a surjective
morphism

(B〈xt 〉, J ′,γ′) −→ (D, J̄ , γ̄)

where J ′ := JB〈xt 〉+B〈xt 〉+, whose kernel is generated by elements of the forms: (xt −
ft ), and γ′n(

∑
t rt ft − r0) where rt ∈ B and r0 ∈ I B . Since we have that

ΩB〈xt 〉/A
∼=ΩB/A ⊗B B〈xt 〉⊕B〈xt 〉d xt

Thus we have
ΩB〈xt 〉/A ⊗B〈xt 〉 D ∼=ΩB/A ⊗B D ⊕Dd xt

By 5.1 there is a canonical surjection

ΩB〈xt 〉/A ⊗B〈xt 〉 D −→ΩD/A

whose kernel is generated by all {dk ⊗1|k ∈ Ker(B〈xt 〉�D)}.
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Clearly the canonical composition:

ΩB/A ⊗B D ,→ΩB〈xt 〉/A ⊗B〈xt 〉 D �ΩB〈xt 〉/A ⊗B〈xt 〉 D/(d(xt − ft ))t∈T

is surjective. But since it has a retraction, it is an isomorphism. Now to prove the lemma
we only need to show that

λ :=ΩB〈xt 〉/A ⊗B〈xt 〉 D/(d(xt − ft )t∈T )�ΩD/A,δ

is an isomorphism. Given an elementγ′n(
∑

t∈T rt xt−r0) satisfying the relation
∑

t∈T rt ft−
r0 with rt ∈ B and r0 ∈ I B , we have

dγ′n(
∑
t∈T

rt xt − r0) = γ′n−1(
∑
t∈T

rt xt − r0)d(
∑
t∈T

rt xt − r0)

= γ′n−1(
∑
t∈T

rt xt − r0)(
∑
t∈T

rt d(xt − ft )− ∑
t∈T

(xt − ft )drt )

is 0 in ΩB〈xt 〉/A ⊗B〈xt 〉 D/(d(xt − ft )t∈T ). But since those elements generate the kernel of
λ, we conclude that λ is an isomorphism.

In the general case we write B as a quotient P �B of a polynomial P over A. Let J ′ ⊆ P
be the inverse image of J , and let (D ′, J̄ ′,δ) be the PD-envelop of (P, J ′). Then there is a
surjection

(D ′, J̄ ′,δ)� (D, J̄ , γ̄)

whose kernel is generated by {δn(k)|k ∈ K := Ker(P � B)}. But since P is flat over A we
have

ΩD ′/A,δ =ΩP/A ⊗P D ′

The kernel M of
ΩP/A ⊗P D =ΩD ′/A,δ⊗D ′ D →ΩD/A,γ̄′

is generated by {dδn(k)⊗1|k ∈ K }. Since dδn(k) = δn−1(k)dk, the kernel M is actually
generated by {dk ⊗ 1|k ∈ K }. As ΩB/A is the quotient of ΩP/A ⊗P B by the submodule
generated by {dk ⊗1|k ∈ K }, we have that ΩB/A ⊗B D �ΩD/A,γ̄′ is an isomorphism.

• Let B be a ring, and let ΩB := ΩB/Z. Let d : B → ΩB be the canonical derivation. Set
Ωi

B :=∧i
B ΩB . The we get a complex

0 →Ω0
B

d 0

−→Ω1
B

d 1

−→Ω2
B

d 2

−→ ·· ·

where the differentials d p : Ωp
B −→Ω

p+1
B is defined by

d(b0db1
∧

db2
∧ · · ·∧dbp ) −→ db0

∧
db1

∧
db2

∧ · · ·∧dbp )

Clearly we have that d ◦d = 0, so this is a complex if we can show that d is well-defined.

Indeed, the B-module ΩB/Z is the free module on the basis {db|b ∈ B} modulo the sub
B-module M generated by elements of the form d(a +b)−d a −db and d(ab)−adb −
bd a. If we regard M as a sub abelian group of the free B-module, then M is generated
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by sd(a +b)− sd a − sdb and sd(ab)− sadb − sbd a with s ∈ B . These are mapped to 0
by the map we defined. So d 1 is well-defined. The map d 1 defines for us a map

ψ : ΩB ⊗ZΩB ⊗Z · · ·⊗ZΩB︸ ︷︷ ︸
p−times

−→Ωp+1

sending
w1 ⊗·· ·⊗wp 7→∑

i
(−1)(i+1)w1 ∧·· ·∧d wi ∧·· ·∧wp

To show that d p is well-defined we only have to show that ψ sends

w1 ⊗·· ·⊗ f wi ⊗·· ·⊗wp −w1 ⊗·· ·⊗ f w j ⊗·· ·⊗wp

to 0 for all f ∈ B . The following equations

d( f a1)∧db1 ∧a2db2 − f a1db1 ∧d a2 ∧db2 −d a1 ∧db1 ∧ f a2db2 +a1db1 ∧d f a2 ∧db2

=(a2d f a1 + f a1d a2 − f a2d a1 −a1d f a2)∧db1 ∧db2

=0

shows without the loss of generality that w1⊗·· ·⊗ f wi ⊗·· ·⊗wp−w1⊗·· ·⊗ f w j ⊗·· ·⊗wp

is mapped to 0. So we win.

• Lemma: Let B be a ring. Letπ :ΩB →Ω be a surjection of B-modules. Denote d : B →Ω

be the composition of the derivation dB := B →ΩB with the surjection. SetΩi =∧i
B (Ω).

Assume that Ker(π) is generated as a B-module by some elements ω ∈ ΩB such that
d 1

B (ω) is in the kernel of Ω2
B �Ω2. Then there is a (de Rham) complex

Ω0 →Ω1 →···

whose differentials are defined by

d p : Ωp →Ωp+1, d p ( f w1 ∧·· ·∧wp ) 7→ d p ( f )∧w1 ∧·· ·∧wp

• Proof. We only have to prove that there exist commutative diagrams:

B
dB // ΩB

π
����

d 1
B // Ω2

B

d 2
B //

∧2π
��

· · ·

B
d // Ω

d 1
// Ω2 d 2

// · · ·
The left square is given by definition. For the second square we have to show that Ker(π)
goes to Ker(∧2π) under d 1

B . But Ker(π) is generated by bw , where b ∈ B and d 1
B w ∈

Ker(∧2π), and d 1
B (bw) = dB b ∧w +bd 1

B w ∈ Ker(∧2π) as desired.

If i > 1, then we have that Ker(∧iπ) is equal to the image of

Ker(π)⊗Ω(i−1) →Ωi

12



Now let w1 ∈ Ker(π) and w2 ∈Ω(i−1)
B . We have

d i
B (w1 ∧w2) = d 1

B w1 ∧w2 −w1 ∧d (i−1)
B w2

which is seen by the induction hypothesis to be contained in Ker(∧(i+1)π).

• Now we consider a special case when Ω := ΩB/A,δ, where B is an A-algebra equipped
with a PD-structure (B , J ,δ). In this case the kernel of ΩB/Z → ΩB/A,δ is generated by
elements of the form dB a for a ∈ A and dBδn(x)−δn−1(x)dB x for x ∈ J . It is enough to
show that the image of these elements under d 1

B is contained in Ker(∧2π). But we have

d 1
B (dB a) = 0, ∀a ∈ A

and,
d 1

B (dBδn(x)−δn−1(x)dB x) =−d 1
B (δn−1(x)dB x))

=−dB (δn−1(x))∧dB (x)

=−δn−2(x)dB x ∧dB x

= 0

This proves everything.

• Integrable connections and the induced de Rham Complex.

7 THE CRYSTALLINE TOPOS (05/12/2017)

§1 The Grothendieck topology

• The general definition of Grothendieck topology

• Examples: (1) The global classical topology; (2) The global Zariski topology; (3) The
crystalline topology which we explain now.

• Definition: Let X be a topological space, and let A be a sheaf of rings on X . Let I ⊆A

be an ideal of A . A sequence of maps of sets γn : I → I for n ≥ 0 is called a PD-
structure on I if for each open U ⊆ X the maps γn(U ) : I (U ) →I (U ) is a PD-structure
on I (U ).

• Fact: Let X = Spec(A), and let I ⊆ A be an ideal. Denote Ĩ the quasi-coherent ideal
sheaf associated with I . Then to give a PD-structure on I is equivalent to giving a PD-
structure on the sheaf Ĩ . (Key point: PD-structure extends along flat maps, so in partic-
ular localizations.)

• Situation: Let p be a prime number, and let (S, I ,γ), or (S0,S,γ) where S0 ⊆ S is a closed
subscheme with kernel I , be a PD-scheme over Z(p). Let X → S0 be a map of schemes
and suppose that p is nilpotent on X .

• The definition of the big and the small crystalline site
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§2 The Grothendieck topos

• The definition of a topos

• Examples: (1) The category of sheaves on a topological space, in particular, the category
of sets is a topos; (2) The étale topos, the fppf-topos, the fpqc-topos; (3) The crystalline
topos which we explain now:

• Proposition: A sheaf on Cris(X /S) (resp. CRIS(X /S)) is equivalent to the following data:
For every morphism u : (U1,T1,δ1) → (U ,T,δ) we are given a Zariski sheaf FT on T and
a map ρu : u−1(FT ) →FT subject to the following conditions:

1. If v : (U2,T2,δ2) → (U1,T1,δ1) is another map, then v−1(ρu)◦ρv = ρu◦v .

2. If u : T1 → T is an open embedding, then ρ−1
u is an isomorphism.

For a proof see https://stacks.math.columbia.edu/tag/07IN.

• Examples: (1) The structure sheaf O sending (U ,T,δ) 7→OT . (2) The strange sheaf send-
ing (U ,T,δ) 7→OU .

§3 Morphisms between topoi

• A morphism of topoi f : X̃ → Ỹ consists of a pair of adjoint functors

( f∗ : X̃ → Ỹ , f ∗ : Ỹ → X̃ )

in which f ∗ commutes with finite inverse limits.

• Definition: A functor f −1 : Y → X between two sites is called continuous if for any sheaf
F on X the composition F ◦ f −1 is a sheaf on Y .

• Theorem: Suppose that f −1 : Y → X is a continuous functor between two sites, then
the functor f̃ −1 : X̃ → Ỹ has a left adjoint f̃ ∗.

• Definition: A functor f −1 : Y → X between two sites is called cocontinuous if for any
object U ∈ Y and every covering {Vi → f −1(U )} in X , there exists a covering {U j →U }
in Y such that { f −1(U j ) → f −1(U )} refines {Vi → f −1(U )}, that is for every Vi → f −1(U )
there exists a f −1(U j ) → f −1(U ) which has a factorization f −1(U j ) →Vi .

• Theorem: Suppose that f −1 : Y → X is cocontinuous, then the induced map f̃ −1 : Ỹ →
X̃ has a right adjoint f̃∗ : Ỹ → X̃ and f = ( f̃∗, f̃ −1) defines a maps of topoi.

• Theorem: Let X ,Y be sites, and let f −1 : Y → X be a functor such that

1. f −1 is continuous and cocontinuous.

2. fibred products and equalizers exist in Y and f −1 commutes with those.

then the induced functor f̃ ∗ : Ỹ → X̃ commutes with fibred products and equalizers.
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• Lemma: The category CRIS(X /S) has all finite non-empty limits, and the functor

CRIS(X /S) −→ Sch/X

(U ,T,δ) 7→U

commutes with those.

• Lemma: The category Cris(X /S) has non-empty limits, and the inclusion

i−1 : Cris(X /S) ⊆ CRIS(X /S)

commutes with those.

• Corollary: There are morphisms of topoi:

(X /S)Cris
i−→ (X /S)CRIS

π−→ (X /S)Cris

where ĩ∗ = π̃∗ = ĩ−1.

• Functoriality: Suppose that we have a PD-morphism (S, I ,γ) → (S′, I ′,γ′) and a dia-
gram:

X //

��

X ′

��

S0
// S′

0

where S0 = Spec(OS/I ). Then we have an obvious functor

f : CRIS(X /S) −→ CRIS(X ′/S′)

This f is both continuous and cocontinuous. This induces a map between topoi

(X /S)CRIS
fCRIS−−−→ (X ′/S′)CRIS

Thus we have a map of topoi fCris obtained by composition:

(X /S)Cris
i−→ (X /S)CRIS

fCRIS−−−→ (X ′/S′)CRIS
π−→ (X ′/S′)Cris

8 THE CRYSTALLINE TOPOS (12/12/2017)

§1 The global section functor

Let’s fix a site X . We denote X̂ the category of presheaves on X and X̃ the category of sheaves
on X .
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• Let T be an object in X̂ . Then we define the functor of "taking T sections" to the func-
tor:

Γ(T,−) : X̃ −→ (Sets)

F 7→ HomX̃ (T,F )

If T is taken to be the terminal object e of X̂ , then we denote Γ(X̃ ,−) or Γ(−) for Γ(e,−),
and this is called the gobal section functor.

• The terminal object in X̂ is the sheaf on X which associate with each object in X the
singleton, i.e. the set with only one point.

• Examples:

1. If X is a topological space equipped with the usual topology, then the identity X
=−→

X is the terminal object in the category of open embeddings of X , so the global
section functor associate with a sheaf F on Y the global section HomX̂ (Y ,F )
which is nothing but the F (Y ) by the by the Yoneda lemma. Moreover, this ter-
minal object certainly does not depend on the choice of X .

2. If X is our site Cris(X /S), then there is no terminal object in general. Indeed if we
take X to be an affine smooth non-empty scheme over k, and we take (S,I ,γ) to
be the triple (Spec(W2), (p),γ), then there is always a deformation X → Spec(W2)
of X → Spec(k). Since the ideal (p) is principal, there is a unique PD-structure δ
on (X ,X ). Since the PD-structure is unique, any automorphism of the pair (X ,X )
(as a deformation) produces an automorphism of the triple (X ,X ,δ). Also any
endomorphism of (X ,X ) as a deformation of induces an isomorphism of X , be-
cause the endomorphism is radiciel (univeral homoemorphism), fiberwise étale
(indeed fiberwise isomorphism), and flat (because X → Spec(W2) is flat and all
the fibres are flat). Now if (U ,T,α) was the terminal object then we have mor-
phism:

(X ,X ,δ) → (U ,T,α) → (X ,X ,δ)

in Cris(X /W2), where the last arrow is obtained by the smoothness of X → Spec(W2).
Thus we see that in the unique map (X ,X ,δ) → (U ,T,α) the map X → T is an
immersion. Hence the pair (X ,X ) admits only one automorphism, which is cer-
tainly not the case.

• Remark: Let X̃ be a topos induced by a site X , and let e be the terminal object. Then
the global section functor F 7→ HomX̃ (e,F ) can also be described as follows: It the set
of compatible systems {ξU }U∈X , where ξU ∈F (U ).

• Definition of ringed topos: A ringed topos is a topos plus a ring object in a topos. Let X̂
be a topos, let O be a ring object. Then we write (X̂ ,O ) for the ringed topos.

• Let (X̂ ,O ) be a ringed topos. Then we denote O−Mod the category of O module objects
in X̃ .
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• Examples: (1) When we take O to be the sheaf which associates to the constant sheaf
with valueZ, then O−Mod is just the category of abelian sheaves on X . (2) For the crys-
talline topos (X /S)Cris we take O to be the sheaf associated with the constant presheaf
of value OS(S).

• Theorem: For any ringed topos (X̃ ,O ), the category O−Mod is an abelian category with
enough injective objects.

• The global section functor is left exact, so we define the right derived functor to be the
crystal cohomology.

• Suppose that we have a commutative diagram:

X ′ g
//

��

X

��

(S′,I ′,γ′) // (S,I ,γ)

Then there is a map of topoi

gCris : (X ′/S′)Cris → (X /S)Cris

Moreover the push-forward induces the Grothendieck spectral sequence:

E pq
2 = H p ((X /S)Cris,Rq g∗E ′) ⇒ H p+q ((X ′/S′)Cris,E ′)

for any E ′ ∈ (X ′/S′)Cris.

• Proposition: There is a natural morphism of topoi

uX /S : (X /S)Cris −→ XZar

given by

1. for any F ∈ (X /S)Cris and j : U → X open embedding we define

u∗(F )(U ) := Γ((U /S)Cris,F |U )

2. for any E ∈ XZar and (U ,T,δ) ∈ Cris(X /S) we set

(u∗(E)(U ,T,δ) := E(U ))

• Remark: We can actually see uX /S as a map of ringed topoi if we equip both (X /S)Cris

and XZar the constant OS(S) ringed topos structure. But we can not equip XZar with the
OX -structure, otherwise uX /S would not be a map of ringed topoi.
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9 THE CRYSTALS AND CALCULUS (19/12/2017)

§1 Crystals

• Definition: Let C be the site Cris(X /S). Let F be a sheaf of OX /S-modules on C , where
OX /S is the sheaf of rings (U ,T,δ) 7→OT .

1. We say F is a crystal if for all map

(U ′,T ′,δ′)
φ−→ (U ,T,δ)

in Cris(X /S) the induced map φ∗FT →FT ′ is an isomorphism.

2. We say that F is a quasi-coherent crystal if each FT is a quasi-coherent OT -
module.

3. We say that F is locally free if for each (U ,T,δ) there exists a covering

{(Ui ,Ti ,δi ) 7→ (U ,T,δ)}i∈I

such that F |(Ui ,Ti ,δi ) is a direct sum of OX /S |(Ui ,Ti ,δi ).

§2 Sheaves of Differentials

• Definition-Lemma: If (X0, X ,δ) is a PD-scheme over a scheme S with the structure mor-
phism f : X → S, then there exists an OX -module ΩX /S,δ and a PD-derivation d : OX →
ΩX /S,δ with the property that for any PD-derivation ϕ : OX → M there exists a unique
OX -linear map ΩX /S,δ→ M which is compatible with d and φ.

• Definition: On Cris(X /S) we have an OX /S-module ΩX /S whose Zariski sheaf on each
object (U ,T,δ), namely the sheaf (ΩX /S)T , is equal to ΩT /S,δ. Moreover, there is a
derivation d : OX /S → ΩX /S which is a PD-derivation on each object. This derivation
is also universal among all such maps.

• Lemma: Let (U ,T,δ) be an object in Cris(X /S). Let (U (1),T (1),δ(1)) be the product of
(U ,T,δ) with itself in Cris(X /S). Let K ⊆OT (1) be the ideal corresponding to the closed

immersion T
∆−→ T (1). Then K ⊆ J (1) where J (1) is the ideal of U (1) ⊆ T (1), and we have

(ΩX /S)T = K /K [2]

• Lemma: The sheaf of differentials ΩX /S has the following properties:

1. (ΩX /S)T is quasi-coherent,

2. for any morphism f : (U ,T,δ) → (U ′,T ′,δ′) where T ⊆ T ′ is a closed embedding

f ∗(ΩX /S)T ′ � (ΩX /S)T

§3 Universal Thickening
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• Recall: Let (A, I ,γ) be a PD-triple, let M be an A-module, and let B : A ⊕ M be an A-
algebra where M is defined to be an ideal of square 0. Let J := I ⊕M . Set

δn(x + z) := γn(x)+γn−1(x)z

for all x ∈ I and z ∈ M . Then δ is a PD-structure on J and

(A, I ,γ) → (B , J ,δ)

is a PD-map.

• Now let (U ,T,δ) ∈ Cris(X /S). Set

T ′ := SpecOT
(OT ⊕ΩT /S,δ)

with OT ⊕ΩT /S,δ the quasi-coherent OT -algebra in which ΩT /S,δ is a square 0 ideal. Let
J ⊆ OT be the ideal sheaf of U ⊆ T . Set J ′ = J ⊕ΩT /S,δ. Then as in the affine case one
gets a PD-structure on J ′ by setting

δ′n( f , w) = (δn( f ),δn−1( f )w)

Then we get two PD-morphisms: p0, p1 :=OT →OT ′ where

p0( f ) = ( f ,0)

p1( f ) = ( f ,d f )

or equivalently: p0, p1 : (U ′,T ′,δ′) → (U ,T,δ). There is also a map of PD-schemes

i : (U ,T,δ) → (U ′,T ′,δ′)

which provides a section to both p0 and p1.

§4 Connections

Definition 3. A Connection on (X /S)Cris is an OX /S-module F equipped with an f −1OS-
modules

∇ : F →F ⊗OX /S ΩX /S

such that ∇( f s) = f ∇(s)+s⊗d f for all sections s ∈F and f ∈OX /S . We can continue defining

∇ : F ⊗OX /S Ω
n
X /S −→F ⊗OX /S Ω

n+1
OX /S

by sending f ⊗m 7→ ∇( f )
∧

m+ f ⊗dm. If we write ∇( f ) as
∑

i fi ⊗ai with fi ∈F and ai ∈Ωn
X /S ,

then the image of f ⊗m can be written as
∑

i fi ⊗ (ai
∧

m)+ f ⊗dm. We call the connection
integrable if we have ∇◦∇= 0. In this case we have the de Rham complex

F
∇−→F ⊗Ω1

X /S
∇−→F ⊗Ω2

X /S →···
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Proposition 9.1. Let F be a crystal in OX /S-modules on Cris(X /S). Then F comes with a
canonical Integrable connection.

Proof. We start with (U ,T,δ) ∈ Cris(X /S), then we get a thickening (U ′,T ′,δ′) with maps

(U ,T,δ)
i−→ (U ′,T ′,δ′)

p0==⇒
p1

(U ,T,δ)

This provides us isomorphisms:

p∗
0 FT

c0−→FT ′
c1←− p∗

1 FT

and the map c := c−1
1 ◦ c0 is the identity of FT via pulling back by i . Thus if s ∈ FT (T ), then

∇(s) := p∗
1 s − c(p∗

0 s) is 0 when pullback via i to T . This implies that ∇(s) ∈ Ker(p∗
1 FT → FT )

Thus ∇(s) ∈FT ⊗OT ΩT /S . The map ∇ is f −1OS-linear, where f denotes T → S, because all the
maps FT → p∗

1 F , FT → p∗
0 F and c are all f −1OS-linear.

For any f ∈OT we have
∇( f s) = p∗

1 ( f s)− cp∗
0 ( f s)

= ( f ,d f )p∗
1 s − ( f ,0)c(p∗

0 (s))

= f ∇(s)+ (0,d f )(s ⊗1)

= f ∇(s)+ s ⊗d f

Now let’s show that ∇ is integrable.

Step 1. Take (U ,T,δ) ∈ Cris(X /S). We define

T ′′ := SpecOT
(OT ⊕ΩT /S,δ⊕ΩT /S,δ⊕Ω2

T /S,δ)

where the ring structure is defined as

( f , w1, w2,η)( f ′, w ′
1, w ′

2,η′) = ( f f ′, f w ′
1 + f ′w1, f w ′

2 + f ′w2, f η′+ f ′η+w1
∧

w ′
2 +w ′

1

∧
w2)

Let
J" := J ⊕ΩT /S,δ⊕ΩT /S,δ⊕Ω2

T /S,δ

We can define a PD-structure on J" by setting

δ"( f , w1, w2,η) = (δn( f ),δn−1( f )w1,δn−1( f )w2,δn−1( f )η+δn−2( f )w1
∧

w2)

There are 3 maps q0, q1, q2 of PD-triples

(U ′′,T ′′,δ") → (U ,T,δ)

defined by
q0( f ) := ( f ,0,0,0)

q1( f ) := ( f ,d f ,0,0)

q2( f ) := ( f ,d f ,d f ,0)
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There are also three projections OT ′ →OT ′′ defined by

q01( f , w) = ( f , w,0,0)

q12( f , w) = ( f ,d f , w,d w)

q02( f , w) = ( f , w, w,0)

These are also PD-maps. Moreover we have the following relations.

q0 = q01 ◦p0 q1 = q01 ◦p1

q1 = q12 ◦p0 q2 = q12 ◦p1

q0 = q02 ◦p0 q2 = q02 ◦p1

Step 2. Take F a crystal on Cris(X /S). Then there is a commutative diagram:

q∗
0 FT

q∗
01c

//

q∗
02c

##

q∗
1 FT

q∗
12c

{{

q∗
2 FT

whose commutativity comes from the commutativity of the following small diagrams:

q∗
0 FT

//

$$��

q∗
01FT ′

��

q∗
1 Foo

zz ��

q∗
02FT ′ // FT ′′ q∗

12FT
oo

q∗
2 FT

OOdd ::

Step 3. For s ∈ Γ(T,FT ) we have c(p∗
0 s) = p∗

1 s −∇(s). Write ∇(s) = ∑
i p∗

1 si ·wi where si ∈ FT

and wi ∈OT ′ . Then we have

(q∗
12c)◦ (q∗

01c)(q∗
0 s) = (q∗

12c)◦ (q∗
01c)(q∗

01(p∗
0 s))

= (q∗
12c)(q∗

01(p∗
1 s −∑

i
p∗

1 si ·wi ))

= (q∗
12c)(q∗

12(p∗
0 s)−∑

i
q∗

12(p0(si ))q01(wi ))

= q∗
12(p∗

1 s −∑
p∗

1 si ·wi )−∑
i

q∗
12(p∗

1 si −∇(si ))q01(wi )

= (q∗
2 s −∑

i
q∗

2 si ·q12(wi ))−∑
i

q∗
2 si ·q01(wi )+∑

i
q∗

12(∇(si )) ·q01(wi )

(9.1)
On the other hand one has

q∗
02c(q∗

0 s) = q∗
2 s −∑

i
q∗

2 si ·q02(wi ) (9.2)

21



Clearly we have q01(wi )+q12(wi )−q02(wi ) = d wi . Thus taking (9.2)-(9.1) we get∑
i

q∗
2 si ·d wi −

∑
i

q∗
12(∇(si )) ·q01(wi )

If one looks into the formula, it is precisely ∇◦∇(s).

10 THE EQUIVALENCE BETWEEN CRYSTALS AND CONNECTIONS

(16/01/2018)

• Situation: Let p be a prime number, and let (A, I ,γ) be a PD-triple in which A is a Z(p)-
algebra. Let A →C be a ring map such that IC = 0 and such that p is nilpotent in C . We
write X = Spec(C ) and S = Spec(A). Choose a polynomial ring P = A[xi ] over A and a
surjection P �C of A-algebras with kernel J := Ker(P �C ). Set

D := lim←−−
e

DP,γ(J )/pe DP,γ(J )

for the p-adically completed divided envelop. This ring D comes with a triple (D, J̄ , γ̄).
We have seen in the exercise that (D/pe D, J̄/ J̄∩pe D, γ̄) is the PD-envelop of (P/pe P, J/pe J )
for e large. On the other hand, we have

ΩD = lim←−−
e
ΩDe /A,γ̄ = lim←−−

e
ΩD/A,γ̄/peΩD/A,γ̄

On the other hand we have
ΩD/A,γ̄ =ΩP/A ⊗P D

as we have seen before. SoΩD/A,γ̄ is a free D-module on the basis {d xi }i∈I , and any ele-
ment inΩD can be written uniquely as a sum (possibly infinite) of the form

∑
i∈I ai d xi .

• Definition: Let

D(n) := lim←−−
e

DP⊗A ···⊗A P,γ(J (n))/pe DP⊗A ···⊗A P,γ(J (n))

where J (n) is the kernel of P ⊗A P ⊗A · · ·⊗A P �C . We set

J̄ (n) := the divide power ideal of D(n)

D(n)e := D(n)/pe D(n)

ΩD(n) := lim←−−
e
ΩD(n)e /A,γ̄ = lim←−−

e
ΩD(n)/A,γ̄/peΩD(n)/A,γ̄

• Quasi-nilpotent connections:
Definition: We call a pair (M ,∇) a quasi-nilpotent connection of D/A if M is a p-
adically complete D-module, ∇ is an integrable connection

∇ : M −→ M⊗̂DΩD

and topologically quasi-nilpotent, that is, if we write ∇(M) = ∑
θi (m)d xi for some op-

erators θi : M → M , then we have that for any m ∈ M there are only finitely many pairs
(i ,k) such that θk

i (m) ∉ pM .
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• Theorem: There is an equivalence:

quasi-coherent crystals on Cris(X /S) ⇐⇒ quasi-nilpotent connections of D/A

• Proof: We will construct two functors in two opposite directions and then claim with-
out proof that that they are inverse to each other.

The functor from the left to the right: Given a quasi-coherent crystal F on Cris(X /S),
we consider the sequence of objects (X ,Te ,δe ) where Te := Spec(De ). If we take value
of F on each Te , then we get a sequence of D-modules Me satisfying that

Me = Me+1 ⊗Z/pe+2ZZ/pe+1Z

Let M := lim←−−e
Me then M is a p-adically complete module.

By 9.1 there is a canonical connection on

∇ : F →F ⊗OX /S Ω
1
X /S

By taking values on each Te and then taking limit, we get an integrable connection

∇ : M → M⊗̂DΩ
1
D

We have to show that this connection is topologically quasi-nilpotent. We do the same
procedure for D(n) and get a p -adically complete D(n)-module M(n). Since F is a
crystal, we have isomorphisms:

M⊗̂D,p0 D(1) −→ M(1) ←− M⊗̂D,p1 D(1)

Let c denote the arrow which goes directly from the left to the right. Pick m ∈ M . Write
ξi := xi ⊗1−1⊗xi . Then we have a unique expression of c(m ⊗1) in terms of ξi :

c(m ⊗1) =∑
K
θK (m)⊗∏

ξ
[ki ]
i

where K runs over all multi-indices K = (ki ) with ki ≥ 0 and
∑

ki <∞. This is due to the
following
Lemma: The projection

P → P ⊗A · · ·⊗A P

f 7→ f ⊗1 · · ·⊗1

induces an isomorphism:

D(n) = lim←−−
e

D〈ξi ( j )〉/pe D〈ξi ( j )〉

where ξi ( j ) := xi ⊗1⊗·· ·⊗1−1⊗·· ·⊗xi ⊗·· ·⊗1.
Proof of the Lemma: Indeed we have

P ⊗A · · ·⊗A P = P [ξi ( j )]
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where ξi ( j ) are considered as indeterminates, and J (n) is generated by J and those
ξi ( j ). Then we apply the last item of §3. End of the Proof
Set θi = θK where K has 1 in the i -th spot and 0 elsewhere. Recall the construction
of the canonical connection on the crystal F . For each thickening like (X ,Te ,δe ) we
construct a thickening (X ,T ′

e ,δ′e ) with two projections: p, q : T ′
e → Te . As F is a crystal,

there are isomorphisms:

p∗FTe

c0−→FT ′
e

c1←− q∗FTe

We wrote c for the map which goes directly from the left to the right. For any section
s ∈FTe we defined

∇(s) := q∗s − c(p∗s)

We have a unique map φ : T ′
e → Spec(D(1)e ) whose compositions with the two canon-

ical projections of D(n)e are the two projections p and q . Indeed this follows from the
following
Lemma: We have

D(n) = ∐
j=0,··· ,n

D

D(n)e =
∐

j=0,··· ,n
De

in Ĉris(C /A), where e is supposed to be sufficiently large.

Proof of the Lemma: If (B �C ,δ) ∈ Ĉris(X /S), then we have

HomĈris(X /S)(D(n)e ,B)

={ f ∈ HomA((Pe ⊗A · · ·⊗A Pe , J (n)), (B ,Ker(B �C )))| f induces identity on C }

=∏
n

{ f ∈ HomA((Pe , J ), (B ,Ker(B �C )))| f induces identity on C }

=∏
n

HomĈris(X /S)(De ,B)

and we have the same equation for D(n). End of the Proof
Thus

∇(m) =φ∗(p∗
1 (m)− c(p∗

0 (m)))

=φ∗(m ⊗1− c(m ⊗1))

=φ∗(m ⊗1−m ⊗1−∑
i
θi (m)ξi )

=∑
i
θi (m)d xi

As in 9.1 we have the equality:
q∗

02c = q∗
12c ◦q∗

01c

Applying it to m ⊗1 we get∑
K "
θK "(m)⊗∏

ζi "[ki "] = ∑
K ,K ′

θK ′(θK (m))⊗∏
ζ′i

[k ′
i ] ∏

ζ
[ki ]
i
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in M⊗̂D,q2 D(2), where
ζi = xi ⊗1⊗1−1⊗xi ⊗1

ζ′i = 1⊗xi ⊗1−1⊗1⊗xi

ζi " = xi ⊗1⊗1−1⊗1⊗xi

We have ζi " = ζi +ζ′i and that

D(2) = q2(D)〈ζi ,ζ′i 〉

Comparing the coefficients we get

1. θi ◦θ j = θ j ◦θi

2. θK (m) = (
∏
θ

ki

i )(m)

If we mod p, then there could only be finitely many θK (m) survive. Thus there are only
finitely many θk

i (m) which do not line in pM .

11 CRYSTALS AND HPD-STRATIFICATIONS (23/01/2018)

• Finish the proof the equivalence between quasi-coherent crystals and quasi-nilpotent
connections in quasi-coherent modules.

• Definition: The conventions and notations are as in the last lecture. Suppose that we
have a commutative diagram

X �
�

//

f
��

Y

��

S0
// S

Set D , DY ,γ(J ) as before. A quasi-coherent HPD-stratification associated with this dia-
gram is a p-adically complete quasi-coherent OD -module M equipped with an isomor-
phism

φ : p∗
0 M

∼=−−→ p∗
1 M

satisfying the cocycle condition:

p∗
01φ◦p∗

12φ= p∗
02φ

where p0, p1 are the two projections D(1) to D and p01, p12, p02 are the three projections
from D(2) to D(1), where the pullbacks are taking by the completed tensor product.

• Theorem: Assumptions and conventions being as above, assume further that f is smooth,
then there is an equivalence of categories between the category of quasi-coherent crys-
tals on Cris(X /S) and the category of HPD-Stratifications with respect to a diagram as
as above.
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12 THE COMPARISON THEOREM (I) (30/01/2018)

• A brief introduction to spectral sequences. Firstly, make the definition of a spectral
sequence. Then construct the spectral sequence associated with a complex with a de-
scending filtration. Finally, introduce the two spectral sequences coming from a double
complex.

• A brief Introduction to simplicial objects and cosimplicial objects.

• Introduce the Dold-Kan theorem. Explain how one gets a cochain complex out of a
cosimplicial object.

• Assuming two key lemma:

1. The p-adic poincaré lemma;

2. For any quasi-coherent crystal F , the Čech complex associated with the Čech
covering D � S is quasi isomorphic to RΓ(Cris(X /S),F ). Note that since D(n) is
actually the n-th product of D in Ĉris(X /S), the complex is of the form

F (D) →F (D(1)) →F (D(2)) · · ·

One can prove the comparison theorem using the spectral sequence associated with
the following double complex:

M⊗̂DΩ
p
D(q)

13 THE COMPARISON THEOREM (II) (02/02/2018)

1. Finish the proof of the two main lemmas.

2. Introduce the comparison theorem in the non-affine case. Note that in this case, one
can only do it assuming that S is killed by a power of p. This sucks!!!

26


	Introduction (17/10/2017)
	Divided Powers (24/10/2017)
	The PD-Envelop (07/11/2017)
	The Affine Crystalline Site (14/11/2017)
	The Differentials of PD-Structures (21/11/2017)
	The de Rham Complex in the Affine Case (28/11/2017)
	The Crystalline Topos (05/12/2017)
	The Crystalline Topos (12/12/2017)
	The Crystals and Calculus (19/12/2017)
	The Equivalence between Crystals and Connections (16/01/2018)
	Crystals and HPD-Stratifications (23/01/2018)
	The Comparison Theorem (I) (30/01/2018)
	The Comparison Theorem (II) (02/02/2018)

