Crystalline Cohomology

Lei Zhang

February 2, 2018

INTRODUCTION

The purpose of this course is to provide an introduction to the basic theory of crystals and crystalline cohomology. Crystalline cohomology was invented by A.Grothendieck in 1966 to construct a Weil cohomology theory for a smooth proper variety *X* over a field *k* of characteristic p > 0. Crystals are certain sheaves on the crystalline site. The first main theorem which we are going to prove is that if there is a lift X_W of *X* to the Witt ring W(k), then the category of integrable quasi-coherent crystals is equivalent to the category of quasi-nilpotent connection of X_W/W . Then we will prove that assuming the existence of the lift the crystalline cohomology of X/k is "the same" as the de Rham cohomology of X_W/W . Following from this we will finally prove a base change theorem of the crystalline cohomology using the very powerful tool of cohomological descent. Along the way we will also see a crystalline version of a "Gauss-Manin" connection.

REFERENCES

- [SP] Authors, Stack Project, https://stacks.math.columbia.edu/download/ crystalline.pdf.
- [BO] P. Berthelot and A. Ogus, *Notes on crystalline cohomology*, Mathematical Notes 21, Princeton University Press and University of Tokyo Press, 1978.
- [B74] P. Berthelot, Cohomologie Cristalline des Schémas de Charactéristique p > 0, LNM 407, Springer Verlag, 1974.

1 INTRODUCTION (17/10/2017)

In this lecture we will give an introduction to crystals and crystalline cohomology. There will be no proofs, and the purpose is just to get a picture of what is going on.

2 DIVIDED POWERS (24/10/2017)

- The Definition of Divided Powers ([BO, §3, 3.1]).
- Examples: (a) If A is an algebra over \mathbb{Q} ; (b) If A = W(k), the Witt ring of a perfect field k.
- Interlude: The Witt ring of a perfect field *k* is characterized by the property that it is a complete DVR with uniformizer *p* and residue field *k*.
- PD-ideals are nil ideals if *A* is kill by $m \in \mathbb{N}^+$. Easy proof: For any $x \in I$, we have $x^n = n!\gamma_n(x) = 0$ for $n \ge m$.
- Definition of sub P.D. ideals ([BO, §3, 3.4]).
- Lemma: If (A, I, γ) is a P.D. ring and $J \subseteq A$ is an ideal, then there is a PD-structure $\bar{\gamma}$ on \bar{I} : = I(A/J) such that $(A, I, \gamma) \rightarrow (A/J, \bar{I}, \bar{\gamma})$ is a PD-map iff $J \cap I \subseteq I$ is a sub PD-ideal ([BO, §3, 3.5]).
- Theorem: If (A, M) is a pair, where *A* is a ring and *M* is an *A*-module, then there is triple $(\Gamma_A(M), \Gamma_A^+(M), \tilde{\gamma})$ with an *A*-linear map $\varphi : M \to \Gamma_A^+(M)$ which satisfy the universal property that if (B, J, δ) is any PD-*A*-algebra and $\psi : M \to J$ is *A*-linear, then there is a unique PD-morphism

$$\bar{\psi}: (\Gamma_A(M), \Gamma_A^+(M), \tilde{\gamma}) \to (B, J, \delta)$$

such that $\bar{\psi} \circ \phi = \psi$. Moreover, we know that $\Gamma_A(M)$ is graded with $\Gamma_0 = A$ and $\Gamma_1 = M$.

- Sketch of the proof: We take *G_A(M)* to be the *A*-polynomial ring generated by indeterminates {(*x*, *n*) | *x* ∈ *M*, *n* ∈ ℕ} whose grading is given by deg(*x*, *n*) = *n*. Let *I_A(M)* be the ideal of *G_A(M)* generated by elements
 - 1. (x, 0) 1
 - 2. $(\lambda x, n) \lambda^n(x, n)$ for $x \in M$ and $\lambda \in A$
 - 3. $(x, n)(x, m) \frac{(n+m)!}{n!m!}(x, n+m)$
 - 4. $(x + y, n) \sum_{i+j=n} (x, i)(y, j)$

One sees that $I_A(M)$ is a homogeneous ideal. Define $\Gamma_A(M) := G_A(M)/I_A(M)$. Now let $x^{[n]}$ be the image of (x, n). Then we have the following

• Lemma: The ideal $\Gamma_A^+(M) \subset \Gamma_A(M)$ has a unique PD-structure γ such that $\gamma_i(x^{[1]}) = x^{[n]}$ for all $i \ge 1$ and all $x \in M$.

- Lemma: If A' is an A-algebra, $A' \otimes_A \Gamma_A(M) \cong \Gamma_{A'}(A' \otimes_A M)$.
- Lemma: If $\{M_i | i \in I\}$ is a direct system of *A*-modules, then we have

$$\varinjlim_{i \in I} \Gamma_A(M_i) = \Gamma_A(\varinjlim_{i \in I} M_i)$$

- Lemma: $\Gamma_A(M) \otimes_A \Gamma_A(N) \cong \Gamma_A(M \oplus N)$.
- Lemma: Suppose *M* is free with basis $S := \{x_i | i \in I\}$. Then $\Gamma_n(M)$ is free with basis $\{x_1^{[q_1]} \cdots x_k^{[q_k]} | \sum q_i = n\}$.

3 THE PD-ENVELOP (07/11/2017)

Theorem 3.1. Let (A, I, γ) be a PD-algebra and let J be an ideal in an A-algebra B such that $IB \subseteq J$. Then there exists a B-algebra $\mathcal{D}_{B,\gamma}(J)$ with a PD-ideal $(\bar{J}, \bar{\gamma})$ such that $J\mathcal{D}_{B,\gamma}(J) \subseteq \bar{J}$, such that $\bar{\gamma}$ is compatible with γ , and with the following universal property: For any B-algebra containing an ideal K which contains JC and with a PD-structure δ compatible with γ , there is a unique PD-morphism $(\mathcal{D}_{B,\gamma}(J), \bar{J}, \bar{\gamma}) \to (C, K, \delta)$ making the obvious diagrams commute.

Proof. First assume that $f(I) \subseteq J$. Viewing *J* as a *B*-module we get a triple $(\Gamma_B(J), \Gamma_B^+(J), \tilde{\gamma})$. Let $\varphi: J \to \Gamma_1(J)$ be the canonical identification. We define a new ideal \mathscr{J} generated by ideals of the two forms:

- 1. $\varphi(x) x$ for $x \in J$
- 2. $\varphi(f(y))^{[n]} f(\gamma_n(y))$ for $y \in I$.

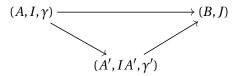
One first has to show the following

Lemma 3.2. The ideal $\mathscr{J} \cap \Gamma_B^+(J)$ is a sub PD-ideal of $\Gamma_B^+(J)$.

So now we define $\mathscr{D}_{B,\gamma}(J)$ to be $\Gamma_B(J)/\mathscr{J}$, $\overline{J} := \Gamma_B^+(J)/\mathscr{J} \cap \Gamma_B^+(J)$, and $\tilde{\gamma}$ is the PD-structure induced by the sub PD-ideal. Now one checks the two things: $J\mathscr{D} \subseteq \overline{J}$ (come from (1) of the definition of \mathscr{J}), and γ is compatible with γ (follows from (2) of the definition of \mathscr{J}). Now it is easy to check that the triple ($\mathscr{D}_{B,\gamma}(J), \overline{J}, \mathscr{J}$) is universal among all such triples. \Box

Here is a list of important properties of PD-envelops.

- \overline{J} is generated, as a PD-ideal, by J. That is \overline{J} is generated by elements { $\overline{\gamma}_n(j) | j \in J, n \ge 1$ }. Moreover a set of generators of J provides a set of PD-generators of \overline{J} .
- If the map $(A, I, \gamma) \rightarrow (B, J)$ factors as a diagram



then we have $\mathcal{D}_{B,\gamma}(J) = \mathcal{D}_{B,\gamma'}(J)$.

- The canonical map $B/J \to \mathcal{D}_{B,\gamma}(J)$ is an isomorphism. Indeed, one just has to consider the PD-triple (B/J, 0, 0) and play with the universal property of $(D_{B,\gamma}(J), \overline{J}, \overline{\gamma})$.
- If *M* is an *A*-module, if $B = \text{Sym}_A(M)$, and if \overline{J} is the ideal $\text{Sym}_A^+(M)$, then $D_{B,\gamma}(J) = \Gamma_A(M)$. This is clear when man plays with the universal property of the PD-envelop of (B, J).
- Lamma: Suppose that $J \subseteq B$ is an ideal, and $(A, I, \gamma) \to (B, J)$ is a morphism. If B' is flat over B, then there is a canonical isomorphism $(\mathcal{D}_{B,\gamma} \otimes_B B') \xrightarrow{\cong} \mathcal{D}_{B',\gamma}(JB')$.
- Theorem: Let (A, I, γ) be a PD-triple. Then there exists a unique PD-structure δ on the ideal $J = IA\langle x_t \rangle_{t \in T} + (A\langle x_t \rangle_{t \in T})_+$ such that
 - 1. $\delta_n(x_i) = x_i^{[n]};$
 - 2. The map $(A, I, \gamma) \rightarrow (A \langle x_t \rangle_{t \in T}, J, \delta)$ is a PD-morphism.

Moreover, there is a universal property: Whenever $(A, I, \gamma) \rightarrow (C, K, \epsilon)$ is a PD-map and $\{k_t\}_{t \in T}$ is a family in *K*, then there exists a unique PD-map $(A \langle x_t \rangle_{t \in T}, J, \delta) \rightarrow (C, K, \epsilon)$ sending $x_t \mapsto k_t$.

- Let (B, I, γ) be a PD-triple, and let $J \subseteq B$ be an ideal containing *I*. Choose $\{f_t\}_{t \in T}$ a family in *J* such that $J = I + \langle f_t \rangle_{t \in T}$. Then there exists a surjection $\psi : (B \langle x_t \rangle, J', \delta) \rightarrow (D_{B,\gamma}(J), \overline{J}, \overline{\gamma})$ which maps $x_t \mapsto \overline{f}_t$, where $(B \langle x_t \rangle, J', \delta)$ is the triple defined in the above theorem, and \overline{f}_t is the image of f_t . The kernel of ψ is generated by all elements:
 - 1. $x_t f_t$ for $f_t \in J$;
 - 2. $\delta_n(\sum_t r_t x_t r_0)$ whenever $\sum_t r_t f_t = r_0$ with $r_0 \in I$, $r_t \in B$ and $n \ge 1$.
- Lemma: Let (A, I, γ) be a PD-ring. Let *B* be an *A*-algebra, and let $IB \subseteq J \subseteq B$ be an ideal. Then we have

$$(D_{B[x_t],\gamma}(JB[x_t] + \langle x_t \rangle), \overline{JB[x_t] + \langle x_t \rangle}, \overline{\gamma}) = (D_{B,\gamma}(J)\langle x_t \rangle, J', \delta)$$

4 THE AFFINE CRYSTALLINE SITE (14/11/2017)

Settings: Let *p* be a prime number, and let (A, I, γ) be a PD-triple in which *A* is a $\mathbb{Z}_{(p)}$ -algebra (i.e. any integer which is prime to *p* is invertible in in *A*). Let $A \to C$ be a ring map such that IC = 0 and *p* is nilpotent in *C*. (Note that in this case *C* is automatically an *A*/*I*-algebra.) **Typical Examples:** Keep in mind the situation when

$$(A, I, \gamma) = (W(k), (p), \gamma)$$

and when

$$(A, I, \gamma) = (W_n(k), (p), \gamma)$$

where *k* is a perfect field of characteristic p > 0.

Definition 1. 1. A thickening of *C* over (A, I, γ) is a PD-map $(A, I, \gamma) \rightarrow (B, J, \delta)$ such that *p* is nilpotent in *B*, and an *A*/*I*-algebra map $C \rightarrow B/J$.

- 2. A map of PD-thickenings is a map $(B, J, \delta) \to (B', J', \delta')$ over the thickening (A, I, γ) whose induced map $B/J \to B'/J'$ is a *C*-algebra map.
- 3. We denote CRIS(C/A) the category of PD-thickenings of *C* over (A, I, γ) .
- 4. We denote $\operatorname{Cris}(C/A)$ the full subcategory of $\operatorname{CRIS}(C/A)$ whose objects are PD-thickenings $((B, J, \delta), C \to B/J)$ in which $C \to B/J$ is an isomorphism.
- **Lemma 4.1.** *1. The category* CRIS(*C*/*A*) *has non-empty products, and the category* Cris(*C*/*A*) *has empty product, i.e. the terminal object.*
 - 2. The category CRIS(C/A) has all finite non-empty colimits and the functor

$$CRIS(C/A) \longrightarrow C - algebras$$

 $(B, J, \delta) \longrightarrow B/J$

commutes with those.

3. The category Cris(C/A) has all finite non-empty colimits and the functor

$$\operatorname{Cris}(C/A) \longrightarrow \operatorname{CRIS}(C/A)$$

commutes with those.

- *Proof.* (i) The empty product of Cris(*C*/*A*) is indeed (*C*, 0, \emptyset). The product of a family of thickenings (*B*_t, *J*_t, δ_t) in CRIS(*C*/*A*) is just ($\prod_t B_t, \prod_t J_t, \prod_t \delta_t$) with the *A*/*I*-algebra map $C \to \prod_t B_t$ coming from each $C \to B_t$.
- (ii) First note that by https://stacks.math.columbia.edu/tag/04AS to show colimits (resp. limit) exist we only have to prove that coproducts and pushouts (resp. products and pullbacks) exist. We divide the proof into steps.
 - The category of PD-triples admits limits.
 - The category of PD-triples admits colimits.
 - Coproducts of pairs exist in CRIS(*C*/*A*). There are also two remarks: (a) If the pair is in Cris(*C*/*A*), then the coproduct is also in Cris(*C*/*A*). (b) The functor

$$CRIS(C/A) \longrightarrow C - algebras$$

commutes with coproducts.

• Coequalizers of pairs exist in CRIS(*C*/*A*). There are also two remarks: (a) If the pair is in Cris(*C*/*A*), then the coequalizer is also in Cris(*C*/*A*). (b) The functor

$$CRIS(C/A) \longrightarrow C - algebras$$

commutes with coproducts.

• Conclude the proof.

Definition 2. Let $\widehat{\operatorname{Cris}}(C/A)$ be the category whose objects are PD-triples (B, J, δ) , where *B* is only *p*-adically comlete instead of nilpotent in *B*, plus an *A*/*I*-algebra map $C \to B/J$ as usual. Clearly that $\operatorname{Cris}(C/A)$ is a full subcategory of $\widehat{\operatorname{Cris}}(C/A)$, as p^n -torsion rings are *p*-adically complete.

Lemma 4.2. Let (A, I, γ) be a PD-ring. Let p be a prime number. If p is nilpotent in A/I, and if A is a $\mathbb{Z}_{(p)}$ -algebra then

- 1. The p-adic completion \hat{A} goes surjectively to A/I.
- 2. The kernel of $\hat{A} \rightarrow A/I$ is \hat{I} .
- 3. Each γ_n is continuous for the *p*-adic topology on *I*.
- 4. For e large, the idea $p^e A \subseteq I$ is preserved by γ_n and we have

$$(\hat{A}, \hat{I}, \hat{\delta}) = \varprojlim_{e} (A/p^{e}A, I/p^{e}I, \gamma_{e})$$

Lemma 4.3. Let $P \to C$ be a surjection of A-algebras with kernel J. We write $(D, \overline{J}, \overline{\gamma})$ for the PD-envelop of (P, J) with respect to (A, I, γ) . Let $(\hat{D}, \overline{J}, \overline{\gamma})$ be the completion of $(D, \overline{J}, \overline{\gamma})$. For every $e \ge 1$, set $(P_e, J_e) := (P/p^e P, J/(J \cap p^e P))$ and $(D_e, \overline{J}_e, \overline{\gamma}_e)$ the PD-envelop of this pair. Then for large e we have

- 1. $p^e D \subseteq \overline{J}$ and $p^e \hat{D} \subseteq \overline{\hat{J}}$ are preserved by the PD-structures.
- 2. $\hat{D}/p^e \hat{D} \cong D/p^e D = D_e$ as PD-rings.
- 3. $(D_e, \overline{J}_e, \overline{\gamma}_e) \in \operatorname{Cris}(C/A)$.
- 4. $(\hat{D}, \hat{\bar{J}}, \hat{\bar{\gamma}}) = \lim_{i \to \infty} (D_e, \bar{J}_e, \bar{\gamma}_e).$
- 5. $(\hat{D}, \hat{\bar{J}}, \hat{\gamma}) \in \hat{Cris}(C/A).$

Lemma 4.4. Let *P* be a polynomial algebra over *A*, and let $P \rightarrow C$ be a surjection of *A*-algebras with kernel *J*. Then every object (*B*, *J*, δ) of CRIS(*C*/*A*) there exists an *e* and a morphism

$$(D_e, \bar{J}_e, \bar{\gamma}_e) \to (B, J, \delta)$$

 $in \operatorname{CRIS}(C/A)$.

Lemma 4.5. Let *P* be a polynomial algebra over *A*, and let $P \rightarrow C$ be a surjection of *A*-algebras with kernel *J*. Let $(D, \overline{J}, \overline{\gamma})$ be the *p*-adic completion of $D_{P,\gamma}(J)$. For every object (B, J, δ) of $\widehat{\operatorname{Cris}}(C/A)$ there exists a morphism

$$(D, \overline{J}, \overline{\gamma}) \to (B, J, \delta)$$

 $in \widehat{\operatorname{Cris}}(C/A).$

5 THE DIFFERENTIALS OF PD-STRUCTURES (21/11/2017)

• Let *A* be a ring. Let (B, J, δ) be a PD-triple. Let $A \to B$ be a ring map. Let *M* be a *B*-module. A PD-derivation is a usual *A*-derivation $\theta: B \to M$ with the extra condition that

(*)
$$\theta(\gamma_n(x)) = \gamma_{n-1}(x)\theta(x)$$

for all $n \ge 1$ and $x \in J$. Let

$$\Omega_{B/A,\delta}:\Omega_{B/A}/\langle d(\gamma_n(x))-\gamma_{n-1}(x)dx\rangle$$

Then $\Omega_{B/A,\delta}$ has the universal property that

$$\operatorname{Hom}_{B}(\Omega_{B/A,\delta}, M) \xrightarrow{\cong} \operatorname{PD-Der}_{A}(B, M)$$

where *M* is a *B*-module. Conceptually, condition (*) can be thought of as the following:

$$d(\frac{x^n}{n!}) = \frac{x^{n-1}}{(n-1)!}dx$$

• A basic Lemma:

Lemma 5.1. Let A be a ring. Let (B, J, δ) be a PD-triple, and $A \rightarrow B$ be a ring map.

1. If we equip B[X] with the PD-structure $(B[X], JB[X], \delta')$, where

$$\gamma_n(aX^m) = \gamma_n(a)X^{mn}$$

then we have

$$\Omega_{B[X]/A,\delta'} = \Omega_{B/A,\delta} \otimes_B B[X] \oplus B[X] dX$$

Here B[X]dX *just means a free* B[X]*-module.*

2. If $B\langle X \rangle$ is equipped with the PD-structure $(JB\langle X \rangle + B\langle X \rangle_+, \delta')$, where δ' takes $j \in J$ to $\delta_n(j)$ and $jX^{[m]}$ to $\frac{(m+n)!}{m!n!}j^nX^{[m+n]}$, then

$$\Omega_{B\langle X\rangle/A,\delta'} = \Omega_{B/A,\delta} \otimes_B B\langle X\rangle \oplus B\langle X\rangle dX$$

3. Let $K \subseteq J$ be an ideal preserved by δ_n for all $n \ge 1$. Set B' := B/K and denote δ' the induced PD-structure on J/K. Then we an exact sequence:

$$K/K^2 \to \Omega_{B/A,\delta} \otimes_B B' \to \Omega_{B'/A,\delta'} \to 0$$

Proof. (1) Set $B[X] \xrightarrow{d} \Omega_{B/A,\delta} \otimes_B B[X] \oplus B[X] dX$ sending

 $b_0 + b_1 X + \dots + b_n X^n \mapsto db_0 \otimes 1 + db_1 \otimes X + \dots + db_n \otimes X^n + b_1 dX + \dots + nb_n X^{n-1} dX$

This is an *A*-derivation. For example we have the derivation:

$$\begin{aligned} d(\delta'_n(bX^m)) &= d(X^{mn}\delta_n(b)) \\ &= \delta_n(b)dX^{mn}dX + \delta_{n-1}(b) \cdot db \cdot X^{mn} \\ &= mX^{mn-1} \cdot (n\delta_n(b))dX + \delta_{n-1}(b) \cdot db \cdot X^{mn} \\ &= mX^{mn-1} \cdot \delta_{n-1}(b) \cdot b \cdot dX + \delta_{n-1}(b) \cdot db \cdot X^{mn} \\ &= (\delta_{n-1}(b) \cdot X^{m(n-1)}) \cdot (X^m db + mbX^{m-1}dX) \\ &= (\delta'_{n-1}(bX^m) \cdot d(bX^m)) \end{aligned}$$

The universal property: Using the universal property of direct sum the universal property of *d* boils down to the universal property of $\Omega_{B/A,\delta}$ and the universal property of the free module B[X]dX.

- (2) Almost the same as (1).
- (3) Look at the diagram:

$$\begin{array}{cccc} 0 & & \longrightarrow M & \longrightarrow \Omega_{B/A} \otimes_B B' & \longrightarrow \Omega_{B'/A} & \longrightarrow 0 \\ & & & & \downarrow^f & & \downarrow^{\varphi} & & \downarrow^{\varphi} \\ 0 & & \longrightarrow M' & \longrightarrow \Omega_{B/A,\delta} \otimes_B B' & \longrightarrow \Omega_{B'/A,\delta'} & \longrightarrow 0 \end{array}$$

Since $\operatorname{Ker}(\phi) \twoheadrightarrow \operatorname{Ker}(\phi)$, we see that *f* is surjective. Since $K/K^2 \twoheadrightarrow M$, it follows that $K/K^2 \twoheadrightarrow M'$.

- Definition: Let (A, I, γ) be a PD-ring. We denote $I^{[n]}$ the ideal generated by $\gamma_{e_1}(x_1) \cdots \gamma_{e_t}(x_t)$ with $\sum e_t \ge n$ and $x_i \in I$. So we have $I^{[0]} = A$, $I^{[1]} = I$ and $I^i \subseteq I^{[i]}$.
- Here is an important Proposition:

Proposition 5.2. Let $a: (A, I, \gamma) \to (B, J, \delta)$ be a map of PD-triples. Let $(B(1), J(1), \delta(1))$ be the coproduct of a with itself. Denote K the kernel of the diagonal map $\Delta: B(1) \to B$. Then we have

$$\Omega_{B/A,\delta} \cong K/(K^2 + (K \bigcap J(1))^{\lfloor 2 \rfloor})$$

Proof. Let's denote the two projections

$$B \stackrel{s_0}{\underset{s_1}{\Longrightarrow}} B(1)$$

by s_0 , s_1 respectively. Since the composition

$$B \stackrel{s_0}{\underset{s_1}{\Longrightarrow}} B(1) \stackrel{\Delta}{\longrightarrow} B$$

is the identity, we see that the map $B \to B(1)$ sending $b \mapsto s_0(b) - s_1(b)$ factors through K. Thus we obtain a map

$$d: B \longrightarrow K/(K^2 + (K \cap J(1))^{[2]})$$

Clearly *d* is additive and vanishes on *A*, and

$$d(b_1b_2) = b_1d(b_2) + b_2d(b_1)$$

= $s_1(b_1)(s_1(b_1) - s_0(b_2)) + s_0(b_2)(s_1(b_1) - s_0(b_1))$
= $s_1(b_1)s_1(b_2) - s_0(b_2)s_0(b_1)$
= $s_1(b_1b_2) - s_0(b_1b_2)$

Thus *d* is a derivation. We have to check that *d* is a PD-derivation. Let $x \in J$. Set $y = s_1(x)$, $z = s_0(z)$ and $\lambda := \delta(1)$. Since $d(\lambda_n(x)) = s_1(\lambda_n(x)) - s_0(\lambda_n(x)) = \lambda_n(y) - \lambda_n(z)$, and $\lambda_{n-1}(x) \cdot dx = \lambda_{n-1}(y)(y-z)$, we need to show that

$$\lambda_n(y) - \lambda_n(z) = \lambda_{n-1}(y)(y-z)$$

for all $n \ge 1$. If n = 1 this is clearly true. Let n > 1. We have that

$$\lambda_n(z-y) = \sum_{i=0}^n (-1)^{n-i} \lambda_i(z) \lambda_{n-i}(y) \in K^2 + (K \cap J(1))^{[2]}$$

as $z - y \in K \cap J(1)$ and $n \ge 2$. Then we have

$$\lambda_n(y) - \lambda_n(z) = \lambda_n(y) + \sum_{i=0}^{n-1} (-1)^{n-i} \lambda_i(z) \lambda_{n-i}(y)$$

= $\lambda_n(y) + (-1)^n \lambda_n(y) + \sum_{i=1}^{n-1} (-1)^{n-i} (\lambda_i(y) - \lambda_{i-1}(y)(y-z)) \lambda_{n-i}(y)$

Since we have

$$\lambda_i(y)\lambda_{n-i}(y) = \binom{n}{i}\lambda_n(y)$$

and

$$\lambda_{i-1}(y)\lambda_{n-i}(y) = \binom{n-1}{i-1}\lambda_{n-1}(y)$$

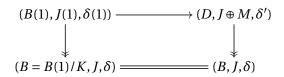
we can continue

$$\begin{split} \lambda_n(y) - \lambda_n(z) &= \lambda_n(y) + (-1)^n \lambda_n(y) + \sum_{i=1}^{n-1} (-1)^{n-i} \binom{n}{i} \lambda_n(y) - \sum_{i=1}^{n-1} (-1)^{n-i} \binom{n-1}{i-1} \lambda_{i-1}(y)(y-z)) \\ &= \sum_{i=0}^n (-1)^{n-i} \binom{n}{i} \lambda_n(y) - \sum_{i=0}^{n-2} (-1)^{n-i-1} \binom{n-1}{i} \lambda_{n-1}(y)(y-z) \\ &= (1-1)^n \lambda_n(y) - (1-1) \lambda_{n-1}(y-z) + \lambda_{n-1}(y)(y-z) \\ &= \lambda_{n-1}(y)(y-z) \end{split}$$

Let *M* be any *B*-module, and let $\theta: B \to M$ be a PD *A*-derivation. Set $D \coloneqq B \oplus M$, where *M* is an ideal of square 0. Define a PD-structure on $J \oplus M \subseteq D$ by setting $\delta'_n(x+m) = \delta'_n(x) + \delta'_{n-1}(x)m$ for all $n \ge 1$. There are two PD-morphisms:

$$(B, J, \delta) \stackrel{t_0}{\underset{t_1}{\Longrightarrow}} (D = B \oplus M, J \oplus M, \delta')$$

where t_1 is just the canonical inclusion $b \mapsto b$ and t_2 is the map sending $b \mapsto b + \theta(b)$. Thus by the universal property we have a commutative diagram



This induces a map $K \rightarrow M$. Since $M^2 = 0$ and $M^{[2]} = 0$. Thus we get a factorization

$$\phi \coloneqq K/(K + (K \cap J(1))^{\lfloor 2 \rfloor}) \to M$$

This ϕ is compatible with d and θ by construction, and it is unique because K is generated by $\{s_1(b) - s_0(b) | b \in B\}$.

• Lemma: Let $(B, J, \delta) \in CRIS(C/A)$ and let $(B(1), J(1), \delta(1))$ be the coproduct in CRIS(C/A). Let *K* be the kernel of the diagonal. Then $K \cap J(1) \subseteq J(1)$ is preserved by the PD-structure and,

$$\Omega_{B/A,\delta} \cong K/(K^2 + (K \bigcap J(1))^{[2]})$$

6 THE DE RHAM COMPLEX IN THE AFFINE CASE (28/11/2017)

Lemma: Let (A, I, γ) be a PD-triple, and let A → B be a ring map. Let IB ⊆ J ⊆ B be an ideal. Let (D, J, γ) := (D_{B,γ}(J), J, γ). Then we have

$$\Omega_{D/A,\delta} = \Omega_{B/A} \otimes_B D$$

• *Proof.* Let's first suppose that $A \to B$ is flat. Then there is a unique PD-structure (B, IB, γ') which is compatible with (A, I, γ) . By a lemma in §3, we see that there is a surjective morphism

$$(B\langle x_t\rangle, J', \gamma') \longrightarrow (D, \overline{J}, \overline{\gamma})$$

where $J' := JB\langle x_t \rangle + B\langle x_t \rangle_+$, whose kernel is generated by elements of the forms: $(x_t - f_t)$, and $\gamma'_n(\sum_t r_t f_t - r_0)$ where $r_t \in B$ and $r_0 \in IB$. Since we have that

$$\Omega_{B\langle x_t\rangle/A} \cong \Omega_{B/A} \otimes_B B\langle x_t\rangle \oplus B\langle x_t\rangle dx_t$$

Thus we have

$$\Omega_{B\langle x_t\rangle/A} \otimes_{B\langle x_t\rangle} D \cong \Omega_{B/A} \otimes_B D \oplus Ddx_t$$

By 5.1 there is a canonical surjection

$$\Omega_{B\langle x_t\rangle/A}\otimes_{B\langle x_t\rangle}D\longrightarrow\Omega_{D/A}$$

whose kernel is generated by all $\{dk \otimes 1 | k \in \text{Ker}(B\langle x_t \rangle \rightarrow D)\}$.

Clearly the canonical composition:

$$\Omega_{B/A} \otimes_B D \hookrightarrow \Omega_{B\langle x_t \rangle/A} \otimes_{B\langle x_t \rangle} D \twoheadrightarrow \Omega_{B\langle x_t \rangle/A} \otimes_{B\langle x_t \rangle} D/(d(x_t - f_t))_{t \in T}$$

is surjective. But since it has a retraction, it is an isomorphism. Now to prove the lemma we only need to show that

$$\lambda \coloneqq \Omega_{B\langle x_t \rangle / A} \otimes_{B\langle x_t \rangle} D/(d(x_t - f_t)_{t \in T}) \twoheadrightarrow \Omega_{D/A,\delta}$$

is an isomorphism. Given an element $\gamma'_n(\sum_{t \in T} r_t x_t - r_0)$ satisfying the relation $\sum_{t \in T} r_t f_t - r_0$ with $r_t \in B$ and $r_0 \in IB$, we have

$$\begin{aligned} d\gamma'_n(\sum_{t\in T} r_t x_t - r_0) &= \gamma'_{n-1}(\sum_{t\in T} r_t x_t - r_0) d(\sum_{t\in T} r_t x_t - r_0) \\ &= \gamma'_{n-1}(\sum_{t\in T} r_t x_t - r_0)(\sum_{t\in T} r_t d(x_t - f_t) - \sum_{t\in T} (x_t - f_t) dr_t) \end{aligned}$$

is 0 in $\Omega_{B(x_t)/A} \otimes_{B(x_t)} D/(d(x_t - f_t)_{t \in T})$. But since those elements generate the kernel of λ , we conclude that λ is an isomorphism.

In the general case we write *B* as a quotient $P \rightarrow B$ of a polynomial *P* over *A*. Let $J' \subseteq P$ be the inverse image of *J*, and let $(D', \overline{J}', \delta)$ be the PD-envelop of (P, J'). Then there is a surjection

$$(D', \overline{J}', \delta) \rightarrow (D, \overline{J}, \overline{\gamma})$$

whose kernel is generated by $\{\delta_n(k) | k \in K := \text{Ker}(P \twoheadrightarrow B)\}$. But since *P* is flat over *A* we have

$$\Omega_{D'/A,\delta} = \Omega_{P/A} \otimes_P D'$$

The kernel M of

$$\Omega_{P/A} \otimes_P D = \Omega_{D'/A,\delta} \otimes_{D'} D \to \Omega_{D/A,\bar{\gamma}'}$$

is generated by $\{d\delta_n(k) \otimes 1 | k \in K\}$. Since $d\delta_n(k) = \delta_{n-1}(k)dk$, the kernel *M* is actually generated by $\{dk \otimes 1 | k \in K\}$. As $\Omega_{B/A}$ is the quotient of $\Omega_{P/A} \otimes_P B$ by the submodule generated by $\{dk \otimes 1 | k \in K\}$, we have that $\Omega_{B/A} \otimes_B D \rightarrow \Omega_{D/A, \tilde{Y}'}$ is an isomorphism. \Box

• Let *B* be a ring, and let $\Omega_B \coloneqq \Omega_{B/\mathbb{Z}}$. Let $d \colon B \to \Omega_B$ be the canonical derivation. Set $\Omega_B^i \coloneqq \bigwedge_B^i \Omega_B$. The we get a complex

$$0 \to \Omega_B^0 \xrightarrow{d^0} \Omega_B^1 \xrightarrow{d^1} \Omega_B^2 \xrightarrow{d^2} \cdots$$

where the differentials $d^p \colon \Omega^p_B \longrightarrow \Omega^{p+1}_B$ is defined by

$$d(b_0db_1\bigwedge db_2\bigwedge\cdots\bigwedge db_p)\longrightarrow db_0\bigwedge db_1\bigwedge db_2\bigwedge\cdots\bigwedge db_p)$$

Clearly we have that $d \circ d = 0$, so this is a complex if we can show that *d* is well-defined.

Indeed, the *B*-module $\Omega_{B/\mathbb{Z}}$ is the free module on the basis $\{db|b \in B\}$ modulo the sub *B*-module *M* generated by elements of the form d(a + b) - da - db and d(ab) - adb - bda. If we regard *M* as a sub abelian group of the free *B*-module, then *M* is generated

by sd(a+b) - sda - sdb and sd(ab) - sadb - sbda with $s \in B$. These are mapped to 0 by the map we defined. So d^1 is well-defined. The map d^1 defines for us a map

$$\psi: \underbrace{\Omega_B \otimes_{\mathbb{Z}} \Omega_B \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} \Omega_B}_{p-\text{times}} \longrightarrow \Omega^{p+1}$$

sending

$$w_1 \otimes \cdots \otimes w_p \mapsto \sum_i (-1)^{(i+1)} w_1 \wedge \cdots \wedge dw_i \wedge \cdots \wedge w_p$$

To show that d^p is well-defined we only have to show that ψ sends

$$w_1 \otimes \cdots \otimes f w_i \otimes \cdots \otimes w_p - w_1 \otimes \cdots \otimes f w_j \otimes \cdots \otimes w_p$$

to 0 for all $f \in B$. The following equations

$$\begin{aligned} &d(fa_1) \wedge db_1 \wedge a_2 db_2 - fa_1 db_1 \wedge da_2 \wedge db_2 - da_1 \wedge db_1 \wedge fa_2 db_2 + a_1 db_1 \wedge dfa_2 \wedge db_2 \\ &= (a_2 dfa_1 + fa_1 da_2 - fa_2 da_1 - a_1 dfa_2) \wedge db_1 \wedge db_2 \\ &= 0 \end{aligned}$$

shows without the loss of generality that $w_1 \otimes \cdots \otimes f w_i \otimes \cdots \otimes w_p - w_1 \otimes \cdots \otimes f w_j \otimes \cdots \otimes w_p$ is mapped to 0. So we win.

• Lemma: Let *B* be a ring. Let $\pi : \Omega_B \to \Omega$ be a surjection of *B*-modules. Denote $d : B \to \Omega$ be the composition of the derivation $d_B := B \to \Omega_B$ with the surjection. Set $\Omega^i = \bigwedge_B^i(\Omega)$. Assume that Ker(π) is generated as a *B*-module by some elements $\omega \in \Omega_B$ such that $d_B^1(\omega)$ is in the kernel of $\Omega_B^2 \to \Omega^2$. Then there is a (de Rham) complex

$$\Omega^0 \to \Omega^1 \to \cdots$$

whose differentials are defined by

$$d^p: \Omega^p \to \Omega^{p+1}, \qquad d^p(fw_1 \wedge \dots \wedge w_p) \mapsto d^p(f) \wedge w_1 \wedge \dots \wedge w_p$$

• *Proof.* We only have to prove that there exist commutative diagrams:

The left square is given by definition. For the second square we have to show that $\text{Ker}(\pi)$ goes to $\text{Ker}(\wedge^2 \pi)$ under d_B^1 . But $\text{Ker}(\pi)$ is generated by bw, where $b \in B$ and $d_B^1 w \in \text{Ker}(\wedge^2 \pi)$, and $d_B^1(bw) = d_B b \wedge w + b d_B^1 w \in \text{Ker}(\wedge^2 \pi)$ as desired.

If *i* > 1, then we have that $\text{Ker}(\wedge^{i}\pi)$ is equal to the image of

$$\operatorname{Ker}(\pi) \otimes \Omega^{(i-1)} \to \Omega^i$$

Now let $w_1 \in \text{Ker}(\pi)$ and $w_2 \in \Omega_B^{(i-1)}$. We have

$$d_B^i(w_1 \wedge w_2) = d_B^1 w_1 \wedge w_2 - w_1 \wedge d_B^{(i-1)} w_2$$

which is seen by the induction hypothesis to be contained in $\text{Ker}(\wedge^{(i+1)}\pi)$.

• Now we consider a special case when $\Omega \coloneqq \Omega_{B/A,\delta}$, where *B* is an *A*-algebra equipped with a PD-structure (B, J, δ) . In this case the kernel of $\Omega_{B/\mathbb{Z}} \to \Omega_{B/A,\delta}$ is generated by elements of the form $d_B a$ for $a \in A$ and $d_B \delta_n(x) - \delta_{n-1}(x) d_B x$ for $x \in J$. It is enough to show that the image of these elements under d_B^1 is contained in Ker($\wedge^2 \pi$). But we have

$$d_B^1(d_B a) = 0, \ \forall a \in A$$

and,

$$\begin{aligned} d_B^1(d_B\delta_n(x) - \delta_{n-1}(x)d_Bx) &= -d_B^1(\delta_{n-1}(x)d_Bx)) \\ &= -d_B(\delta_{n-1}(x)) \wedge d_B(x) \\ &= -\delta_{n-2}(x)d_Bx \wedge d_Bx \\ &= 0 \end{aligned}$$

This proves everything.

• Integrable connections and the induced de Rham Complex.

7 THE CRYSTALLINE TOPOS (05/12/2017)

- \$1 The Grothendieck topology
 - · The general definition of Grothendieck topology
 - Examples: (1) The global classical topology; (2) The global Zariski topology; (3) The crystalline topology which we explain now.
 - Definition: Let *X* be a topological space, and let \mathscr{A} be a sheaf of rings on *X*. Let $\mathscr{I} \subseteq \mathscr{A}$ be an ideal of \mathscr{A} . A sequence of maps of sets $\gamma_n \colon \mathscr{I} \to \mathscr{I}$ for $n \ge 0$ is called a PD-structure on \mathscr{I} if for each open $U \subseteq X$ the maps $\gamma_n(U) \colon \mathscr{I}(U) \to \mathscr{I}(U)$ is a PD-structure on $\mathscr{I}(U)$.
 - Fact: Let X = Spec(A), and let $I \subseteq A$ be an ideal. Denote \tilde{I} the quasi-coherent ideal sheaf associated with *I*. Then to give a PD-structure on *I* is equivalent to giving a PD-structure on the sheaf \tilde{I} . (Key point: PD-structure extends along flat maps, so in particular localizations.)
 - Situation: Let *p* be a prime number, and let (S, I, γ) , or (S_0, S, γ) where $S_0 \subseteq S$ is a closed subscheme with kernel *I*, be a PD-scheme over $\mathbb{Z}_{(p)}$. Let $X \to S_0$ be a map of schemes and suppose that *p* is nilpotent on *X*.
 - The definition of the big and the small crystalline site

§2 The Grothendieck topos

- The definition of a topos
- Examples: (1) The category of sheaves on a topological space, in particular, the category of sets is a topos; (2) The étale topos, the fppf-topos, the fpqc-topos; (3) The crystalline topos which we explain now:
- Proposition: A sheaf on $\operatorname{Cris}(X/S)$ (resp. $\operatorname{CRIS}(X/S)$) is equivalent to the following data: For every morphism $u: (U_1, T_1, \delta_1) \to (U, T, \delta)$ we are given a Zariski sheaf \mathscr{F}_T on T and a map $\rho_u: u^{-1}(\mathscr{F}_T) \to \mathscr{F}_T$ subject to the following conditions:
 - 1. If $v: (U_2, T_2, \delta_2) \rightarrow (U_1, T_1, \delta_1)$ is another map, then $v^{-1}(\rho_u) \circ \rho_v = \rho_{u \circ v}$.
 - 2. If $u: T_1 \to T$ is an open embedding, then ρ_u^{-1} is an isomorphism.

For a proof see https://stacks.math.columbia.edu/tag/07IN.

Examples: (1) The structure sheaf 𝔅 sending (U, T, δ) → 𝔅_T. (2) The strange sheaf sending (U, T, δ) → 𝔅_U.

§3 Morphisms between topoi

• A morphism of topoi $f: \tilde{X} \to \tilde{Y}$ consists of a pair of adjoint functors

$$(f_* \colon \tilde{X} \to \tilde{Y}, f^* \colon \tilde{Y} \to \tilde{X})$$

in which f^* commutes with finite inverse limits.

- Definition: A functor $f^{-1}: Y \to X$ between two sites is called *continuous* if for any sheaf \mathscr{F} on X the composition $\mathscr{F} \circ f^{-1}$ is a sheaf on Y.
- Theorem: Suppose that $f^{-1}: Y \to X$ is a continuous functor between two sites, then the functor $\tilde{f}^{-1}: \tilde{X} \to \tilde{Y}$ has a left adjoint \tilde{f}^* .
- Definition: A functor $f^{-1}: Y \to X$ between two sites is called *cocontinuous* if for any object $U \in Y$ and every covering $\{V_i \to f^{-1}(U)\}$ in X, there exists a covering $\{U_j \to U\}$ in Y such that $\{f^{-1}(U_j) \to f^{-1}(U)\}$ refines $\{V_i \to f^{-1}(U)\}$, that is for every $V_i \to f^{-1}(U)$ there exists a $f^{-1}(U_j) \to f^{-1}(U)$ which has a factorization $f^{-1}(U_j) \to V_i$.
- Theorem: Suppose that $f^{-1}: Y \to X$ is cocontinuous, then the induced map $\tilde{f}^{-1}: \tilde{Y} \to \tilde{X}$ has a right adjoint $\tilde{f}_*: \tilde{Y} \to \tilde{X}$ and $f = (\tilde{f}_*, \tilde{f}^{-1})$ defines a maps of topoi.
- Theorem: Let *X*, *Y* be sites, and let f^{-1} : $Y \to X$ be a functor such that
 - 1. f^{-1} is continuous and cocontinuous.
 - 2. fibred products and equalizers exist in *Y* and f^{-1} commutes with those.

then the induced functor $\tilde{f}^* \colon \tilde{Y} \to \tilde{X}$ commutes with fibred products and equalizers.

• Lemma: The category CRIS(X/S) has all finite non-empty limits, and the functor

$$\operatorname{CRIS}(X/S) \longrightarrow \operatorname{Sch}_{/X}$$

$$(U, T, \delta) \mapsto U$$

commutes with those.

• Lemma: The category Cris(X/S) has non-empty limits, and the inclusion

$$i^{-1}$$
: Cris(X/S) \subseteq CRIS(X/S)

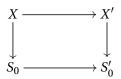
commutes with those.

• Corollary: There are morphisms of topoi:

$$(X/S)_{\text{Cris}} \xrightarrow{\iota} (X/S)_{\text{CRIS}} \xrightarrow{\pi} (X/S)_{\text{Cris}}$$

where $\tilde{i}^* = \tilde{\pi}_* = \tilde{i}^{-1}$.

• Functoriality: Suppose that we have a PD-morphism $(S, I, \gamma) \rightarrow (S', I', \gamma')$ and a diagram:



where $S_0 = \text{Spec}(\mathcal{O}_S/I)$. Then we have an obvious functor

 $f: \operatorname{CRIS}(X/S) \longrightarrow \operatorname{CRIS}(X'/S')$

This f is both continuous and cocontinuous. This induces a map between topoi

$$(X/S)_{\text{CRIS}} \xrightarrow{f_{\text{CRIS}}} (X'/S')_{\text{CRIS}}$$

Thus we have a map of topoi f_{Cris} obtained by composition:

$$(X/S)_{\text{Cris}} \xrightarrow{i} (X/S)_{\text{CRIS}} \xrightarrow{f_{\text{CRIS}}} (X'/S')_{\text{CRIS}} \xrightarrow{\pi} (X'/S')_{\text{Cris}}$$

8 THE CRYSTALLINE TOPOS (12/12/2017)

\$1 The global section functor

Let's fix a site X. We denote \hat{X} the category of presheaves on X and \tilde{X} the category of sheaves on X.

• Let *T* be an object in \hat{X} . Then we define the functor of "taking *T* sections" to the functor:

 $\Gamma(T,-): \qquad \qquad \tilde{X} \longrightarrow (\text{Sets})$ $F \mapsto \text{Hom}_{\tilde{X}}(T,F)$

If *T* is taken to be the terminal object *e* of \hat{X} , then we denote $\Gamma(\tilde{X}, -)$ or $\Gamma(-)$ for $\Gamma(e, -)$, and this is called the gobal section functor.

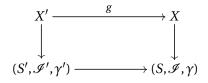
- The terminal object in \hat{X} is the sheaf on *X* which associate with each object in *X* the singleton, i.e. the set with only one point.
- Examples:
 - If X is a topological space equipped with the usual topology, then the identity X → X is the terminal object in the category of open embeddings of X, so the global section functor associate with a sheaf F on Y the global section Hom_{X̂}(Y,F) which is nothing but the F(Y) by the by the Yoneda lemma. Moreover, this terminal object certainly does not depend on the choice of X.
 - If X is our site Cris(X/S), then there is no terminal object in general. Indeed if we take X to be an affine smooth non-empty scheme over k, and we take (S, I, γ) to be the triple (Spec (W₂), (p), γ), then there is always a deformation X → Spec (W₂) of X → Spec (k). Since the ideal (p) is principal, there is a unique PD-structure δ on (X, X). Since the PD-structure is unique, any automorphism of the pair (X, X) (as a deformation) produces an automorphism of the triple (X, X, δ). Also any endomorphism of (X, X) as a deformation of induces an isomorphism of X, because the endomorphism is radiciel (univeral homoemorphism), fiberwise étale (indeed fiberwise isomorphism), and flat (because X → Spec (W₂) is flat and all the fibres are flat). Now if (U, T, α) was the terminal object then we have morphism:

$$(X, \mathcal{X}, \delta) \to (U, T, \alpha) \to (X, \mathcal{X}, \delta)$$

in $\operatorname{Cris}(X/W_2)$, where the last arrow is obtained by the smoothness of $\mathscr{X} \to \operatorname{Spec}(W_2)$. Thus we see that in the unique map $(X, \mathscr{X}, \delta) \to (U, T, \alpha)$ the map $\mathscr{X} \to T$ is an immersion. Hence the pair (X, \mathscr{X}) admits only one automorphism, which is certainly not the case.

- Remark: Let \tilde{X} be a topos induced by a site X, and let e be the terminal object. Then the global section functor $\mathscr{F} \mapsto \operatorname{Hom}_{\tilde{X}}(e, \mathscr{F})$ can also be described as follows: It the set of compatible systems $\{\xi_U\}_{U \in X}$, where $\xi_U \in \mathscr{F}(U)$.
- Definition of ringed topos: A ringed topos is a topos plus a ring object in a topos. Let X̂ be a topos, let 𝔅 be a ring object. Then we write (X̂, 𝔅) for the ringed topos.
- Let (*X̂*, 𝔅) be a ringed topos. Then we denote *O*−Mod the category of 𝔅 module objects in *X̃*.

- Examples: (1) When we take \mathcal{O} to be the sheaf which associates to the constant sheaf with value \mathbb{Z} , then \mathcal{O} Mod is just the category of abelian sheaves on *X*. (2) For the crystalline topos $(X/S)_{\text{Cris}}$ we take \mathcal{O} to be the sheaf associated with the constant presheaf of value $\mathcal{O}_S(S)$.
- Theorem: For any ringed topos (\tilde{X}, \mathcal{O}) , the category \mathcal{O} Mod is an abelian category with enough injective objects.
- The global section functor is left exact, so we define the right derived functor to be the crystal cohomology.
- Suppose that we have a commutative diagram:



Then there is a map of topoi

$$g_{\text{Cris}}: (X'/S')_{\text{Cris}} \to (X/S)_{\text{Cris}}$$

Moreover the push-forward induces the Grothendieck spectral sequence:

$$E_2^{pq} = H^p((X/S)_{\text{Cris}}, R^q g_* E') \Rightarrow H^{p+q}((X'/S')_{\text{Cris}}, E')$$

for any $E' \in (X'/S')_{Cris}$.

· Proposition: There is a natural morphism of topoi

$$u_{X/S}: (X/S)_{\text{Cris}} \longrightarrow X_{\text{Zar}}$$

given by

1. for any $\mathscr{F} \in (X/S)_{Cris}$ and $j: U \to X$ open embedding we define

$$u_*(\mathscr{F})(U) \coloneqq \Gamma((U/S)_{\mathrm{Cris}}, \mathscr{F}|_U)$$

2. for any $E \in X_{Zar}$ and $(U, T, \delta) \in Cris(X/S)$ we set

$$(u^*(E)(U,T,\delta) \coloneqq E(U))$$

• Remark: We can actually see $u_{X/S}$ as a map of ringed topoi if we equip both $(X/S)_{Cris}$ and X_{Zar} the constant $\mathcal{O}_S(S)$ ringed topos structure. But we can not equip X_{Zar} with the \mathcal{O}_X -structure, otherwise $u_{X/S}$ would not be a map of ringed topoi.

9 THE CRYSTALS AND CALCULUS (19/12/2017)

§1 Crystals

- Definition: Let \mathscr{C} be the site $\operatorname{Cris}(X/S)$. Let \mathscr{F} be a sheaf of $\mathscr{O}_{X/S}$ -modules on \mathscr{C} , where $\mathscr{O}_{X/S}$ is the sheaf of rings $(U, T, \delta) \mapsto \mathscr{O}_T$.
 - 1. We say \mathcal{F} is a crystal if for all map

$$(U', T', \delta') \xrightarrow{\phi} (U, T, \delta)$$

in Cris(*X*/*S*) the induced map $\phi^* \mathscr{F}_T \to \mathscr{F}_{T'}$ is an isomorphism.

- 2. We say that \mathscr{F} is a quasi-coherent crystal if each \mathscr{F}_T is a quasi-coherent \mathscr{O}_T -module.
- 3. We say that \mathscr{F} is locally free if for each (U, T, δ) there exists a covering

$$\{(U_i, T_i, \delta_i) \mapsto (U, T, \delta)\}_{i \in I}$$

such that $\mathscr{F}|_{(U_i,T_i,\delta_i)}$ is a direct sum of $\mathscr{O}_{X/S}|_{(U_i,T_i,\delta_i)}$.

§2 Sheaves of Differentials

- Definition-Lemma: If (X_0, X, δ) is a PD-scheme over a scheme *S* with the structure morphism $f: X \to S$, then there exists an \mathcal{O}_X -module $\Omega_{X/S,\delta}$ and a PD-derivation $d: \mathcal{O}_X \to \Omega_{X/S,\delta}$ with the property that for any PD-derivation $\varphi: \mathcal{O}_X \to M$ there exists a unique \mathcal{O}_X -linear map $\Omega_{X/S,\delta} \to M$ which is compatible with *d* and ϕ .
- Definition: On $\operatorname{Cris}(X/S)$ we have an $\mathcal{O}_{X/S}$ -module $\Omega_{X/S}$ whose Zariski sheaf on each object (U, T, δ) , namely the sheaf $(\Omega_{X/S})_T$, is equal to $\Omega_{T/S,\delta}$. Moreover, there is a derivation $d: \mathcal{O}_{X/S} \to \Omega_{X/S}$ which is a PD-derivation on each object. This derivation is also universal among all such maps.
- Lemma: Let (U, T, δ) be an object in Cris(X/S). Let $(U(1), T(1), \delta(1))$ be the product of (U, T, δ) with itself in Cris(X/S). Let $K \subseteq \mathcal{O}_{T(1)}$ be the ideal corresponding to the closed immersion $T \xrightarrow{\Delta} T(1)$. Then $K \subseteq J(1)$ where J(1) is the ideal of $U(1) \subseteq T(1)$, and we have

$$(\Omega_{X/S})_T = K/K^{[2]}$$

- Lemma: The sheaf of differentials $\Omega_{X/S}$ has the following properties:
 - 1. $(\Omega_{X/S})_T$ is quasi-coherent,
 - 2. for any morphism $f: (U, T, \delta) \to (U', T', \delta')$ where $T \subseteq T'$ is a closed embedding

$$f^*(\Omega_{X/S})_{T'} \twoheadrightarrow (\Omega_{X/S})_T$$

\$3 Universal Thickening

• Recall: Let (A, I, γ) be a PD-triple, let *M* be an *A*-module, and let $B: A \oplus M$ be an *A*-algebra where *M* is defined to be an ideal of square 0. Let $J := I \oplus M$. Set

$$\delta_n(x+z) \coloneqq \gamma_n(x) + \gamma_{n-1}(x)z$$

for all $x \in I$ and $z \in M$. Then δ is a PD-structure on J and

$$(A, I, \gamma) \rightarrow (B, J, \delta)$$

is a PD-map.

• Now let $(U, T, \delta) \in Cris(X/S)$. Set

$$T' \coloneqq \operatorname{Spec}_{\mathscr{O}_T}(\mathscr{O}_T \oplus \Omega_{T/S,\delta})$$

with $\mathcal{O}_T \oplus \Omega_{T/S,\delta}$ the quasi-coherent \mathcal{O}_T -algebra in which $\Omega_{T/S,\delta}$ is a square 0 ideal. Let $J \subseteq \mathcal{O}_T$ be the ideal sheaf of $U \subseteq T$. Set $J' = J \oplus \Omega_{T/S,\delta}$. Then as in the affine case one gets a PD-structure on J' by setting

$$\delta'_n(f, w) = (\delta_n(f), \delta_{n-1}(f)w)$$

Then we get two PD-morphisms: $p_0, p_1 := \mathcal{O}_T \to \mathcal{O}_{T'}$ where

$$p_0(f) = (f, 0)$$

 $p_1(f) = (f, df)$

or equivalently: $p_0, p_1: (U', T', \delta') \rightarrow (U, T, \delta)$. There is also a map of PD-schemes

$$i: (U, T, \delta) \rightarrow (U', T', \delta')$$

which provides a section to both p_0 and p_1 .

§4 Connections

Definition 3. A *Connection* on $(X/S)_{Cris}$ is an $\mathcal{O}_{X/S}$ -module \mathscr{F} equipped with an $f^{-1}\mathcal{O}_{S}$ -modules

$$\nabla \colon \mathscr{F} \to \mathscr{F} \otimes_{\mathscr{O}_{X/S}} \Omega_{X/S}$$

such that $\nabla(fs) = f\nabla(s) + s \otimes df$ for all sections $s \in \mathcal{F}$ and $f \in \mathcal{O}_{X/S}$. We can continue defining

$$\nabla \colon \mathscr{F} \otimes_{\mathscr{O}_{X/S}} \Omega^n_{X/S} \longrightarrow \mathscr{F} \otimes_{\mathscr{O}_{X/S}} \Omega^{n+1}_{\mathscr{O}_{X/S}}$$

by sending $f \otimes m \mapsto \nabla(f) \wedge m + f \otimes dm$. If we write $\nabla(f)$ as $\sum_i f_i \otimes a_i$ with $f_i \in \mathscr{F}$ and $a_i \in \Omega^n_{X/S}$, then the image of $f \otimes m$ can be written as $\sum_i f_i \otimes (a_i \wedge m) + f \otimes dm$. We call the connection integrable if we have $\nabla \circ \nabla = 0$. In this case we have the de Rham complex

$$\mathcal{F} \xrightarrow{\nabla} \mathcal{F} \otimes \Omega^1_{X/S} \xrightarrow{\nabla} \mathcal{F} \otimes \Omega^2_{X/S} \to \cdots$$

1	a
T	J

Proposition 9.1. Let \mathscr{F} be a crystal in $\mathscr{O}_{X/S}$ -modules on $\operatorname{Cris}(X/S)$. Then \mathscr{F} comes with a canonical Integrable connection.

Proof. We start with $(U, T, \delta) \in Cris(X/S)$, then we get a thickening (U', T', δ') with maps

$$(U, T, \delta) \xrightarrow{i} (U', T', \delta') \xrightarrow{p_0}_{p_1} (U, T, \delta)$$

This provides us isomorphisms:

$$p_0^* \mathscr{F}_T \xrightarrow{c_0} \mathscr{F}_{T'} \xleftarrow{c_1} p_1^* \mathscr{F}_T$$

and the map $c \coloneqq c_1^{-1} \circ c_0$ is the identity of \mathscr{F}_T via pulling back by *i*. Thus if $s \in \mathscr{F}_T(T)$, then $\nabla(s) \coloneqq p_1^* s - c(p_0^* s)$ is 0 when pullback via *i* to *T*. This implies that $\nabla(s) \in \operatorname{Ker}(p_1^* \mathscr{F}_T \to \mathscr{F}_T)$ Thus $\nabla(s) \in \mathscr{F}_T \otimes_{\mathscr{O}_T} \Omega_{T/S}$. The map ∇ is $f^{-1} \mathscr{O}_S$ -linear, where *f* denotes $T \to S$, because all the maps $\mathscr{F}_T \to p_1^* \mathscr{F}, \mathscr{F}_T \to p_0^* \mathscr{F}$ and *c* are all $f^{-1} \mathscr{O}_S$ -linear. For any $f \in \mathscr{O}_T$ we have

$$\begin{aligned} \nabla(fs) &= p_1^*(fs) - cp_0^*(fs) \\ &= (f, df)p_1^*s - (f, 0)c(p_0^*(s)) \\ &= f\nabla(s) + (0, df)(s \otimes 1) \\ &= f\nabla(s) + s \otimes df \end{aligned}$$

Now let's show that ∇ is integrable.

Step 1. Take $(U, T, \delta) \in Cris(X/S)$. We define

$$T'' \coloneqq \operatorname{Spec}_{\mathscr{O}_T}(\mathscr{O}_T \oplus \Omega_{T/S,\delta} \oplus \Omega_{T/S,\delta} \oplus \Omega_{T/S,\delta}^2)$$

where the ring structure is defined as

$$(f, w_1, w_2, \eta)(f', w'_1, w'_2, \eta') = (ff', fw'_1 + f'w_1, fw'_2 + f'w_2, f\eta' + f'\eta + w_1 \bigwedge w'_2 + w'_1 \bigwedge w_2)$$

Let

$$J'' := J \oplus \Omega_{T/S,\delta} \oplus \Omega_{T/S,\delta} \oplus \Omega_{T/S,\delta}^2$$

We can define a PD-structure on *J*["] by setting

$$\delta''(f, w_1, w_2, \eta) = (\delta_n(f), \delta_{n-1}(f) w_1, \delta_{n-1}(f) w_2, \delta_{n-1}(f) \eta + \delta_{n-2}(f) w_1 \bigwedge w_2)$$

There are 3 maps q_0, q_1, q_2 of PD-triples

$$(U'', T'', \delta'') \rightarrow (U, T, \delta)$$

defined by

$$q_0(f) := (f, 0, 0, 0)$$
$$q_1(f) := (f, df, 0, 0)$$
$$q_2(f) := (f, df, df, 0)$$

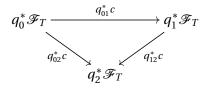
There are also three projections $\mathcal{O}_{T'} \to \mathcal{O}_{T''}$ defined by

$$q_{01}(f, w) = (f, w, 0, 0)$$
$$q_{12}(f, w) = (f, df, w, dw)$$
$$q_{02}(f, w) = (f, w, w, 0)$$

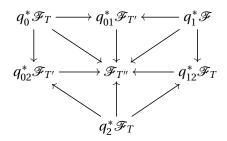
These are also PD-maps. Moreover we have the following relations.

$$q_0 = q_{01} \circ p_0 \qquad q_1 = q_{01} \circ p_1$$
$$q_1 = q_{12} \circ p_0 \qquad q_2 = q_{12} \circ p_1$$
$$q_0 = q_{02} \circ p_0 \qquad q_2 = q_{02} \circ p_1$$

Step 2. Take \mathscr{F} a crystal on Cris(*X*/*S*). Then there is a commutative diagram:



whose commutativity comes from the commutativity of the following small diagrams:



Step 3. For $s \in \Gamma(T, \mathscr{F}_T)$ we have $c(p_0^* s) = p_1^* s - \nabla(s)$. Write $\nabla(s) = \sum_i p_1^* s_i \cdot w_i$ where $s_i \in \mathscr{F}_T$ and $w_i \in \mathscr{O}_{T'}$. Then we have

$$(q_{12}^*c) \circ (q_{01}^*c)(q_0^*s) = (q_{12}^*c) \circ (q_{01}^*c)(q_{01}^*(p_0^*s)) = (q_{12}^*c)(q_{01}^*(p_1^*s - \sum_i p_1^*s_i \cdot w_i)) = (q_{12}^*c)(q_{12}^*(p_0^*s) - \sum_i q_{12}^*(p_0(s_i))q_{01}(w_i)) = q_{12}^*(p_1^*s - \sum_i p_1^*s_i \cdot w_i) - \sum_i q_{12}^*(p_1^*s_i - \nabla(s_i))q_{01}(w_i) = (q_2^*s - \sum_i q_2^*s_i \cdot q_{12}(w_i)) - \sum_i q_2^*s_i \cdot q_{01}(w_i) + \sum_i q_{12}^*(\nabla(s_i)) \cdot q_{01}(w_i)$$
(9.1)

On the other hand one has

$$q_{02}^*c(q_0^*s) = q_2^*s - \sum_i q_2^*s_i \cdot q_{02}(w_i)$$
(9.2)

Clearly we have $q_{01}(w_i) + q_{12}(w_i) - q_{02}(w_i) = dw_i$. Thus taking (9.2)-(9.1) we get

$$\sum_{i} q_{2}^{*} s_{i} \cdot dw_{i} - \sum_{i} q_{12}^{*} (\nabla(s_{i})) \cdot q_{01}(w_{i})$$

If one looks into the formula, it is precisely $\nabla \circ \nabla(s)$.

10 THE EQUIVALENCE BETWEEN CRYSTALS AND CONNECTIONS (16/01/2018)

• Situation: Let *p* be a prime number, and let (A, I, γ) be a PD-triple in which *A* is a $\mathbb{Z}_{(p)}$ algebra. Let $A \to C$ be a ring map such that IC = 0 and such that *p* is nilpotent in *C*. We
write X = Spec(C) and S = Spec(A). Choose a polynomial ring $P = A[x_i]$ over *A* and a
surjection $P \to C$ of *A*-algebras with kernel $J := \text{Ker}(P \to C)$. Set

$$D := \varprojlim_{e} D_{P,\gamma}(J) / p^{e} D_{P,\gamma}(J)$$

for the *p*-adically completed divided envelop. This ring *D* comes with a triple $(D, \overline{J}, \overline{\gamma})$. We have seen in the exercise that $(D/p^e D, \overline{J}/\overline{J} \cap p^e D, \overline{\gamma})$ is the PD-envelop of $(P/p^e P, J/p^e J)$ for *e* large. On the other hand, we have

$$\Omega_D = \varprojlim_e \Omega_{D_e/A,\tilde{\gamma}} = \varprojlim_e \Omega_{D/A,\tilde{\gamma}} / p^e \Omega_{D/A,\tilde{\gamma}}$$

On the other hand we have

$$\Omega_{D/A,\bar{\gamma}} = \Omega_{P/A} \otimes_P D$$

as we have seen before. So $\Omega_{D/A,\tilde{\gamma}}$ is a free *D*-module on the basis $\{dx_i\}_{i \in I}$, and any element in Ω_D can be written uniquely as a sum (possibly infinite) of the form $\sum_{i \in I} a_i dx_i$.

Definition: Let

$$D(n) := \lim_{a} D_{P \otimes_A \cdots \otimes_A P, \gamma}(J(n)) / p^e D_{P \otimes_A \cdots \otimes_A P, \gamma}(J(n))$$

where J(n) is the kernel of $P \otimes_A P \otimes_A \cdots \otimes_A P \twoheadrightarrow C$. We set

 $\overline{J}(n) :=$ the divide power ideal of D(n)

$$D(n)_e \coloneqq D(n) / p^e D(n)$$

$$\Omega_{D(n)} \coloneqq \varprojlim_e \Omega_{D(n)_e/A, \tilde{\gamma}} = \varprojlim_e \Omega_{D(n)/A, \tilde{\gamma}} / p^e \Omega_{D(n)/A, \tilde{\gamma}}$$

• Quasi-nilpotent connections:

Definition: We call a pair (M, ∇) a quasi-nilpotent connection of D/A if M is a p-adically complete D-module, ∇ is an integrable connection

$$\nabla \colon M \longrightarrow M \widehat{\otimes}_D \Omega_D$$

and *topologically quasi-nilpotent*, that is, if we write $\nabla(M) = \sum \theta_i(m) dx_i$ for some operators $\theta_i \colon M \to M$, then we have that for any $m \in M$ there are only finitely many pairs (i, k) such that $\theta_i^k(m) \notin pM$.

• Theorem: There is an equivalence:

quasi-coherent crystals on $Cris(X/S) \iff$ quasi-nilpotent connections of D/A

• Proof: We will construct two functors in two opposite directions and then claim without proof that that they are inverse to each other.

The functor from the left to the right: Given a quasi-coherent crystal \mathscr{F} on $\operatorname{Cris}(X/S)$, we consider the sequence of objects (X, T_e, δ_e) where $T_e := \operatorname{Spec}(D_e)$. If we take value of \mathscr{F} on each T_e , then we get a sequence of *D*-modules M_e satisfying that

$$M_e = M_{e+1} \otimes_{\mathbb{Z}/p^{e+2}\mathbb{Z}} \mathbb{Z}/p^{e+1}\mathbb{Z}$$

Let $M := \lim_{e \to e} M_e$ then *M* is a *p*-adically complete module. By 9.1 there is a canonical connection on

$$\nabla \colon \mathscr{F} \to \mathscr{F} \otimes_{\mathscr{O}_{X/S}} \Omega^{1}_{X/S}$$

By taking values on each T_e and then taking limit, we get an integrable connection

$$\nabla \colon M \to M \widehat{\otimes}_D \Omega^1_D$$

We have to show that this connection is topologically quasi-nilpotent. We do the same procedure for D(n) and get a p-adically complete D(n)-module M(n). Since \mathcal{F} is a crystal, we have isomorphisms:

$$M\widehat{\otimes}_{D,p_0}D(1) \longrightarrow M(1) \longleftarrow M\widehat{\otimes}_{D,p_1}D(1)$$

Let *c* denote the arrow which goes directly from the left to the right. Pick $m \in M$. Write $\xi_i := x_i \otimes 1 - 1 \otimes x_i$. Then we have a unique expression of $c(m \otimes 1)$ in terms of ξ_i :

$$c(m \otimes 1) = \sum_{K} \theta_{K}(m) \otimes \prod \xi_{i}^{[k_{i}]}$$

where *K* runs over all multi-indices $K = (k_i)$ with $k_i \ge 0$ and $\sum k_i < \infty$. This is due to the following

Lemma: The projection

$$P \to P \otimes_A \dots \otimes_A P$$
$$f \mapsto f \otimes 1 \dots \otimes 1$$

induces an isomorphism:

$$D(n) = \varprojlim_{e} D\langle \xi_i(j) \rangle / p^e D\langle \xi_i(j) \rangle$$

where $\xi_i(j) \coloneqq x_i \otimes 1 \otimes \cdots \otimes 1 - 1 \otimes \cdots \otimes x_i \otimes \cdots \otimes 1$. **Proof of the Lemma:** Indeed we have

$$P \otimes_A \cdots \otimes_A P = P[\xi_i(j)]$$

where $\xi_i(j)$ are considered as indeterminates, and J(n) is generated by J and those $\xi_i(j)$. Then we apply the last item of §3. **End of the Proof** Set $\theta_i = \theta_K$ where K has 1 in the *i*-th spot and 0 elsewhere. Recall the construction of the canonical connection on the crystal \mathscr{F} . For each thickening like (X, T_e, δ_e) we construct a thickening (X, T'_e, δ'_e) with two projections: $p, q: T'_e \to T_e$. As \mathscr{F} is a crystal, there are isomorphisms:

$$p^*\mathscr{F}_{T_e} \xrightarrow{c_0} \mathscr{F}_{T'_e} \xleftarrow{c_1} q^*\mathscr{F}_{T_e}$$

We wrote *c* for the map which goes directly from the left to the right. For any section $s \in \mathcal{F}_{T_o}$ we defined

$$\nabla(s) \coloneqq q^* s - c(p^* s)$$

We have a unique map $\phi: T'_e \to \text{Spec}(D(1)_e)$ whose compositions with the two canonical projections of $D(n)_e$ are the two projections p and q. Indeed this follows from the following

Lemma: We have

$$D(n) = \prod_{j=0,\cdots,n} D$$
$$D(n)_e = \prod_{j=0,\cdots,n} D_e$$

in $\widehat{\mathrm{Cris}}(C/A)$, where *e* is supposed to be sufficiently large.

Proof of the Lemma: If $(B \rightarrow C, \delta) \in \widehat{\mathrm{Cris}}(X/S)$, then we have

$$Hom_{\widehat{Cris}(X/S)}(D(n)_e, B) = \{f \in Hom_A((P_e \otimes_A \cdots \otimes_A P_e, J(n)), (B, Ker(B \to C))) | f \text{ induces identity on } C\} = \prod_n \{f \in Hom_A((P_e, J), (B, Ker(B \to C))) | f \text{ induces identity on } C\} = \prod_n Hom_{\widehat{Cris}(X/S)}(D_e, B)$$

and we have the same equation for D(n).

Thus

$$\nabla(m) = \phi^* (p_1^*(m) - c(p_0^*(m)))$$

= $\phi^* (m \otimes 1 - c(m \otimes 1))$
= $\phi^* (m \otimes 1 - m \otimes 1 - \sum_i \theta_i(m) \xi_i)$
= $\sum_i \theta_i(m) dx_i$

As in 9.1 we have the equality:

$$q_{02}^*c = q_{12}^*c \circ q_{01}^*c$$

Applying it to $m \otimes 1$ we get

$$\sum_{K''} \theta_{K''}(m) \otimes \prod \zeta_i {}^{''[k_i'']} = \sum_{K,K'} \theta_{K'}(\theta_K(m)) \otimes \prod \zeta_i'{}^{[k_i']} \prod \zeta_i^{[k_i]}$$

24

End of the Proof

in $M \widehat{\otimes}_{D,q_2} D(2)$, where

$$\zeta_{i} = x_{i} \otimes 1 \otimes 1 - 1 \otimes x_{i} \otimes 1$$
$$\zeta_{i}' = 1 \otimes x_{i} \otimes 1 - 1 \otimes 1 \otimes x_{i}$$
$$\zeta_{i}'' = x_{i} \otimes 1 \otimes 1 - 1 \otimes 1 \otimes x_{i}$$

We have $\zeta_i = \zeta_i + \zeta'_i$ and that

$$D(2) = q_2(D) \langle \zeta_i, \zeta'_i \rangle$$

Comparing the coefficients we get

1.
$$\theta_i \circ \theta_j = \theta_j \circ \theta_i$$

2. $\theta_K(m) = (\prod \theta_i^{k_i})(m)$

If we mod *p*, then there could only be finitely many $\theta_K(m)$ survive. Thus there are only finitely many $\theta_i^k(m)$ which do not line in *pM*.

11 CRYSTALS AND HPD-STRATIFICATIONS (23/01/2018)

- Finish the proof the equivalence between quasi-coherent crystals and quasi-nilpotent connections in quasi-coherent modules.
- Definition: The conventions and notations are as in the last lecture. Suppose that we have a commutative diagram

Set D, $D_{Y,\gamma}(J)$ as before. A quasi-coherent HPD-stratification associated with this diagram is a p-adically complete quasi-coherent \mathcal{O}_D -module M equipped with an isomorphism

$$\phi \colon p_0^* M \xrightarrow{\cong} p_1^* M$$

satisfying the cocycle condition:

$$p_{01}^*\phi \circ p_{12}^*\phi = p_{02}^*\phi$$

where p_0 , p_1 are the two projections D(1) to D and p_{01} , p_{12} , p_{02} are the three projections from D(2) to D(1), where the pullbacks are taking by the completed tensor product.

• Theorem: Assumptions and conventions being as above, assume further that f is smooth, then there is an equivalence of categories between the category of quasi-coherent crystals on Cris(X/S) and the category of HPD-Stratifications with respect to a diagram as as above.

12 THE COMPARISON THEOREM (I) (30/01/2018)

- A brief introduction to spectral sequences. Firstly, make the definition of a spectral sequence. Then construct the spectral sequence associated with a complex with a descending filtration. Finally, introduce the two spectral sequences coming from a double complex.
- A brief Introduction to simplicial objects and cosimplicial objects.
- Introduce the Dold-Kan theorem. Explain how one gets a cochain complex out of a cosimplicial object.
- Assuming two key lemma:
 - 1. The *p*-adic poincaré lemma;
 - 2. For any quasi-coherent crystal \mathscr{F} , the Čech complex associated with the Čech covering $D \twoheadrightarrow S$ is quasi isomorphic to $R\Gamma(\operatorname{Cris}(X/S), \mathscr{F})$. Note that since D(n) is actually the *n*-th product of D in $\widehat{\operatorname{Cris}}(X/S)$, the complex is of the form

$$\mathscr{F}(D) \to \mathscr{F}(D(1)) \to \mathscr{F}(D(2)) \cdots$$

One can prove the comparison theorem using the spectral sequence associated with the following double complex:

$$M \hat{\otimes}_D \Omega^p_{D(q)}$$

13 THE COMPARISON THEOREM (II) (02/02/2018)

- 1. Finish the proof of the two main lemmas.
- 2. Introduce the comparison theorem in the non-affine case. Note that in this case, one can only do it assuming that *S* is killed by a power of *p*. This sucks!!!